SXGA-096 CF XLS

1280 X 1024 LOW-POWER COLOR XLS AMOLED MICRODISPLAY

DATASHEET Revision D

For Part Numbers:

EMA-101204-01

eMagin Corporation reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other rights. Application circuits shown, if any, are typical examples illustrating the operation of the devices. eMagin Corporation cannot assume responsibility for any problem arising out of the use of these circuits

eMagin Corporation 700 South Road, Suite 201 Hopewell Junction, New York 12533 www.emagin.com

Revision Level	ECN	Date	Scope
-	2015-151	12-18-2015	Initial Release
А	000280	07-28-2017	Updated eeprom map (Appendix C)
В		12-15-2017	Updated section 9.7.1 (DISPOFF function)
С	000756	11-20-2019	Updated sections 10.3.5 and 10.4.5, updated
			eeprom map (Appendix C)
D	000876	12-23-2019	Updated Assembly views (Fig 12 & 13) to
			geometric tolerancing standard

TABLE OF CONTENTS

1.	INTRODUCTION	5
2.	GENERAL DESCRIPTION	6
	2.1 SXGA-096 COLOR XLS MICRODISPLAY	6
3.	FUNCTIONAL OVERVIEW	7
4.	INPUT / OUTPUT DESCRIPTION	9
	PIXEL ARRAY LAYOUT	
5.		
6.	ELECTRICAL CHARACTERISTICS	
	6.1 TIMING CHARACTERISTICS	
	6.1.1 Video Input Timing Diagrams	
	6.1.2 Gamma Sensor Timing Diagram	
7.	OPTICAL CHARACTERISTICS	
	7.1 ROOM TEMPERATURE CHARACTERISTICS	
	7.2 Characteristics over full operational temperature range (-46°C to +71°C)	
8.	MECHANICAL CHARACTERISTICS	21
9.	CARRIER BOARD SCHEMATIC	
10.		
	 10.1 VIDEO INTERFACE 10.2 D/A CONVERSION 	
	10.2 D/A CONVERSION	
	10.3.1 Vertical Position Control	
	10.3.2 Horizontal Position Control	
	10.3.3 Interlaced Modes	
	10.3.4 Stereovision Mode	
	10.3.5 Row Duty Rate Control	
	10.4 SENSOR FUNCTIONS	
	10.4.1 Temperature Reduction 10.4.2 Luminance Regulation Sensor	
	10.4.3 Pixel Bias Sensor	
	10.4.4 Luminance Control (Dimming)	
	10.4.5 Luminance Setting	
	10.4.6 Gamma Correction Sensor	
	10.5 DC-DC CONVERTER 10.6 SERIAL INTERFACE	
	10.0 SERIAL INTERFACE	
	10.7.1 Display Off Function	
	10.8 Power Savings Modes	
	10.9 BUILT-IN TEST PATTERNS	
11.	REGISTER MAP SUMMARY	50
12.	DETAILED REGISTER DESCRIPTIONS	53
	12.1 STAT (00н)	53
	12.2 VINMODE (01H)	
	12.3 DISPMODE (02H)	
	12.4 LFTPOS (03H)	
	12.5 RGTPOS (04H)	56

13	2.6	ТОРРОЅ (05н)	57
	2.0 2.7	BOTPOS (06H)	
	2.7	ROWRESET (07H, 08H)	
	2.8 2.9	RAMPCTL (09H)	
	2.10	RAMPCM (0AH)	
	2.11	VDACMX (0BH)	
	2.12	BIASN (0CH)	
	2.13	GAMMASET (0DH)	
	2.14	VCOMMODE (0EH)	
	2.15	VCOMCTL (0FH)	
	2.16	VGMAX (10H)	
	2.17	VCOM (11H)	
	2.18	IDRF (12H)	
	2.19	DIMCTL (13H)	
	2.20	TREFDIV (14H)	
	2.21	TEMPOFF (15H)	
	2.22	TUPDATE (16H)	
	2.23	TEMPOUT (17H)	
	2.24	ANGPWRDN (18H)	
	2.25	SYSPWRDN (19H)	
	2.26	TPMODE (1AH)	
	2.27	TPLINWTH (1BH)	
	2.28	TPCOLSP (1CH)	
	2.29	TPROWSP (1DH)	
	2.30	TPCOLOR (1EH)	
	2.31	DLYSEL (1FH)	
	2.32	LVDSCTL (20H)	
	2.33	SKEW0 (21H, 22H)	
	2.34	SKEW1 (23H, 24H)	
	2.35	SKEW2 (25H, 26H)	
	2.36	SKEW3 (27H, 28H)	
	2.37	SKFAST (29H)	
	2.38	SKSLOW (2AH)	
	2.39	SYNCMOD (2BH)	
	2.40	LUT_ADDR (2CH)	
	2.41	LUT_DATA (2DH, 2EH)	
	2.42	LUT_UPDATE (2Fh)	
	2.43	RESERVED (30H,31H,32H,33H)	
	2.44	Reserved (34H,35H)	
	2.45	Reserved (36H)	
	2.46	RESERVED (37H)	
	2.47	Reserved (38H,39H)	
	2.48	RESERVED (3AH)	
	2.49	RESERVED (3BH)	
	2.50	RESERVED (3CH)	
	2.51	Reserved (3DH)	
	2.52	Reserved (40H)	
	2.53	Reserved (41H)	
12	2.54	Reserved (42H)	.86
13.	APPI	ENDIX A: APPLICATION SYSTEM DIAGRAM	.87
14.	APPI	ENDIX B: LVDS TX DESIGN EXAMPLE	.88
15.	APPI	ENDIX C: EEPROM MEMORY MAP	.94
16.	APPI	ENDIX D: RECOMMENDED REGISTER SETTINGS	.98

1. INTRODUCTION

The SXGA-096 OLED-XLS device from eMagin Corporation is an active-matrix organic light emitting diode (AMOLED) microdisplay intended for near-to-eye applications that demand high brightness, high resolution, high image quality, compact size, and low power. Combining a total of 4,015,536 active dots, the SXGA-096 display is built on a single crystal silicon backplane and features eMagin's proprietary thin-film OLED XLS technology offering extended life and luminance performance.

The active array is comprised of 1292 x 1036 square pixels with a 9.6-micron pitch and a 75% fill factor. An extra 12 columns and 12 rows (beyond the 1280 x 1024 main array) are provided to enable the active SXGA-096 display to be shifted by steps of 1 pixel in the X and Y directions for optical alignment purposes. Additional dummy and test pixels surround the active array. Each full pixel is laid out as three 3.2 x 9.6 micron identical sub-pixels, which together form the 9.6-micron square RGB color group. Three primary color filter stripes are applied in alignment with the sub-pixels on a white-emissive OLED layer to form the color display.

The SXGA-096 design features eMagin's proprietary "Deep Black" architecture that ensures off- pixels are truly black, automatically optimizes contrast under all conditions, and delivers improved pixel uniformity. In addition to its flexible matrix addressing circuitry, the SXGA-096 includes an internal 10-bit DAC that ensures 256 fully gamma-corrected gray levels, an on-chip set of look-up-tables for digital gamma correction, and a novel pulse-width-modulation (PWM) function that, together with the standard analog control, provides an extended dimming range. The PWM function also enables an impulse drive mode of operation that significantly reduces motion artifacts in high speed scene changes.

The SXGA-096 includes a very low-power, low-voltage-differential-signaling (LVDS) serialized interface for video data transport that minimizes the number of board interconnections and connector size, reduces electromagnetic emissions (EMI), and enables a lightweight and flexible cable link to a remote video source. Compatibility with standard LVDS drivers found in most commercially available FPGAs simplifies the system integrators task.

Detailed device specifications and application information for the SXGA-096 OLED-XLS microdisplay produced by eMagin Corporation are provided in this document.

2. GENERAL DESCRIPTION

2.1 SXGA-096 Color XLS Microdisplay

Display Type: Format: Total Pixel Array:	Emissive, color XLS AMOLED on Silicon 1280(x3) x 1024 pixels 1292(x3) x 1036 pixels
Pixel Size & Aspect Ratio:	9.6-micron Square
Fill Factor	75%
Viewing Area	12.4 x 9.945 mm (15.9 mm diagonal (0.62"))
Mechanical Envelope	20.0 x 16.5 x 5.0 mm (w x l x h)
Weight	<3 gm.
Gray Levels	256 levels per primary color
Uniformity	> 85% end-to-end uniformity
Pixel Spatial Noise	<5% (1 sigma)
Contrast Ratio	>10,000:1 (at maximum luminance)
Pixel Response	Linear with input video signal (using internal gamma LUT)
Dimming Ratio	>200:1 analog, >200:1 pwm, >4,000:1 total (maximum)
White Luminance	800 cd/m ² maximum
CIE (White)	CIE-X = 0.30 to 0.37, $CIE-Y = 0.35$ to 0.42
Video Modes	SXGA, HD720, DVGA, 8-bit control of active window
	Progressive & Interlaced scan
	Horizontal (left/right) and vertical (up/down) scan control
	Horizontal and vertical image shift by up to 12 pixels
Video Interface	Serialized LVDS, 24 Digital RGB (up to 5 twisted line
	pairs including the clock pair)
Refresh Rate	30 to 85 Hz
Video Source Clock	120 MHz max
LVDS Clock	480 MHz max
LVDS Data Rate	960 Mbps
Control Interface	I^2C serial interface (+1.8VDC)
Power Consumption	~ 380 mW typical @ 800 cd/m ² (Ta=+20°C)
Power Supply	
VDD5 (analog & array)	5VDC ±5% (700 mA maximum)
VDD1.8 (logic & I/Os)	1.8 VDC $\pm 5\%$ (20 mA maximum)
VPG	-1.5VDC ±5% (1 mA maximum)
Operating ambient temperature	-46 to +71°C
Storage temperature	$-55 \text{ to } +90^{\circ}\text{C}$
Humidity	85% RH non condensing
Tunnaity	0.5 /0 K11 non condensing

3. FUNCTIONAL OVERVIEW

Figure 1: Top-level block diagram for SXGA-096

Figure 2: System application diagram

4. INPUT / OUTPUT DESCRIPTION

Connector J1 is a Hirose DF12D (3.0)-30DP-0.5V

Connector J1

Pin #	Pin Name	Туре	Description
1	GND	Power	Power return terminal.
2	VPG	Power	Negative voltage bias for array protection switch. (-1.5 V)
3	RD3P	LVDS	LVDS Digital Data and Sync Input Port.
4	GND	Power	Power return terminal.
5	RD3N	LVDS	LVDS Digital Data and Sync Input Port.
6	VDD5	Power	Input power for Analog Circuits (5VDC).
7	GND	Power	Power return terminal.
8	VDD5	Power	Input power for VCOM (5VDC).
9	RD2N	LVDS	LVDS Digital Data and Sync Input Port.
10	VDD5	Power	Input power for Pixel Array (5VDC).
11	RD2P	LVDS	LVDS Digital Data and Sync Input Port.
12	GND	Power	Power return terminal.
13	GND	Power	Power return terminal.
14	VDD1.8	Power	Input power for logic and I/O pads.
15	RCKN	LVDS	LVDS source clock.
16	VGN	Analog Out	Gamma sensor output signal. $(0 \text{ to } +2.5\text{V})$
17	RCKP	LVDS	LVDS source clock.
18	BURN_IN	Logic In	Activates test mode used for Burn-In.
19	GND	Power	Power return terminal
20	RESETB	Logic In	Asynchronous system reset (active low).
21	RD1N	LVDS	LVDS Digital Data and Sync Input Port.
22	ENABLE	Logic In	Enable logic input.
23	RD1P	LVDS	LVDS Digital Data and Sync Input Port.
24	SCL	Logic In	Clock port for the serial interface. 400 KHz Max.
25	GND	Power	Power return terminal
26	SDA	Logic I/O	Data port for the serial interface. Open collector I/O
27	RD0N	LVDS	LVDS Digital Data and Sync Input Port.
28	SERADD	Logic In	Serial interface LSB address bit. Must be connected.
29	RD0P	LVDS	LVDS Digital Data and Sync Input Port.
30	LVDS_ALGN	Logic In	LVDS logic initialization signal (CMOS input).

5. PIXEL ARRAY LAYOUT

6. ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Min	Тур.	Max.	Unit
VDD1.8	Front End Power Supply	-0.3		2.5	VDC
VDD5	Array/Analog Power Supply	-0.3		5.5	VDC
VCOM	Common electrode bias	-6		0	VDC
VPG	Array Bias Supply	-3		0	VDC
VI	Input Voltage Range	-0.3		VDD+0.3	VDC
VO	Output Voltage Range	-0.3		VDD+0.3	VDC
PD	Power Dissipation			1	W
Tst	Storage Temperature	-55		+90	°C
Тј	Junction Temperature	-45		+125	°C
Ilu	Latch up current			+100	mA
Vesd	Electrostatic Discharge –			±2000	V
	Human Body Model				

Table 6-1 : Absolute Maximum Ratings

Stresses at or above those listed in this table may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other condition above those indicated in the following tables is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability (except for the reverse bias condition. See below). Prolonged exposure to high temperatures will shorten the luminance half-life.

Symbol	Parameter	Min	Typ.	Max.	Unit
VDD1.8	Front End Power Supply	1.71	1.8	1.89	VDC
VDD5	Array/Analog Power Supply	4.75	5	5.25	VDC
VCOM	Common electrode bias	-5	-2.0	0	VDC
VPG	Array Bias Supply	-3	-1.5	0	VDC
Tst	Storage Temperature	-55		+90	°C
Та	Ambient Operating Temp.	-45	+25	+70	°C
Pdt	All Pixels On Power		400	750	mW
	Consumption (+25°C)				

Table 6-2 : Recommended Operating Conditions

Table 6-3 : D	C Characteristics
---------------	-------------------

Symbol	Parameter	Min	Тур.	Max.	Unit
VDD1.8	Front End Power Supply		1.8		V
VDD5	Array/Analog Power Supply		5		V
VCOM	Common electrode bias	-6	-1.0	0	V
VPG	Array Bias Supply		-1.5		V
Vil	Digital input low level	GND-0.3		0.6	V
Vih	Digital input high level	1.2		VDD1.8+0.3	V
Vol	Digital output low level		GND	0.5	V
Voh	Digital output high level	VDD1.8-0.2	VDD		V
VGN	Gamma feedback signal	0		5	V

$(Ta = 20^{\circ}C, VDD1.8 = +1.8V, VDD5 = +5V, GND = 0V)$

Table 6-4 : AC Characteristics

Symbol	$= +20^{\circ}C, GND = 0V, VDD1.8 = +1.8V$ Parameter	Min	Typ.	Max.	Unit
SCLK	Video Clock Frequency	44	-	120	MHz
CLK_Duty	SCLK duty cycle	45		55	%
Fhs	Horizontal Sync frequency	30		70	KHz
Fvs	Vertical Sync Frequency	30		85	Hz
Tlo	Line Overscan (% of line time)	3			%
Tfb	Frame Blanking (% of frame time)	1			%
Trst	Reset Pulse Width	100		-	μs
Cin	Digital Pins Input Capacitance		3		pF
Cvpg	Pin VPG Input Capacitance		13.6		nF
Pd VDD5	Average VDD5 Power Consumption		365		mW
	(SXGA Mode 60 Hz refresh rate)				
Pd VDD1.8	Average VDD1.8 Power Consumption		30		mW
	(SXGA Mode 60 Hz refresh rate)				
Pd VPG	Average VPG Power Consumption			1	mW
Pd PDWN	Total Power Consumption in PDWN		2.5		mW
	(sleep) mode				
Та	Ambient Operating Temperature	-46		+71	°C

$114 - \pm 20$ C. UND - 0V. VDD1.0- ± 1.0 V. VDD ± 3.0 V. VIC - ± 1.0 V.	D = 0V, VDD1.8 = +1.8V, VDD5 = +5.0V, VPG	= -1.5V.)
--	---	-----------

Power consumption measured at 60Hz refresh rate, room ambient temperature and with a TVlike color test pattern that represents an average video mode (See below Figure 4) and a full white field equivalent luminance of 800 cd/m^2

Figure 4: Color Test Pattern

Figure 5 shows the typical room temperature power consumption of the display for different image contents and maximum luminance.

Figure 5: SXGA096 CFXLS Power vs. Luminance

Figure 6 shows the typical power consumption (mW) over the operational temperature range (°C) and a room temperature luminance set to 800 cd/m^2 with 50% of the pixels turned on.

Figure 6: Power vs. Temperature

6.1 Timing Characteristics

Figure 7: Video Input Timing Diagram

Parameter	Symbol	Min.	Typ.	Max.	Unit
Clock Frequency	Fclk		91 ¹	120	MHz
Clock Period	T _{CLK}		10.98		ns
Clock Duty	D _{CLK}	45		55	%
VSYNC Pulse Width	T _{vs}	2			HSYNC period
Time to Active Video Start	T _{AVS}	5			HSYNC period
Time to Next Vsync	T_{VIDL}	2			HSYNC period
Active Video Lines	T _{AV}	526	1024	1036	HSYNC period
HSYNC Pulse Width	T _{HS}	8			SCLK period
Time to DE Start	T _{DES}	12			SCLK period
Time to Next Hsync	T _{HIDL}	12			SCLK period
Active Video Pixel	T _{LDATA}	782	1280	1292	SCLK period
Line Overscan	T _{HL}	1200			SCLK period

Table 6-5 : Video Input Timing Characteristics

Note 1: SXGA @ 60 0Hz frame rate, Reduced Blanking Mode

6.1.2 Gamma Sensor Timing Diagram

Figure 8: Gamma Sensor Timing Diagram

Parameter	Symbol	Min.	Тур.	Max.	Unit
IDSTEP to VGN Settling Time	$t_{\rm VGN}$	10			ms
Frame Blanking (% of Frame Time)	t _{FB}	1			%
VGN Sampling Time	t _{SMP}	t _{ACQ}		t _{vsde}	
A/D Acquisition Time	t _{ACQ}	20			μs
A/D Conversion Time	t _{CNV}				

7. OPTICAL CHARACTERISTICS

7.1 Room Temperature Characteristics

Symbol	Parameter	Min.	Typ.	Max.	Unit
TATAN	Front Luminance @ max gray level	600	700 ⁽¹⁾	800 ⁽²⁾	cd/m ²
LMAX	Variability (display to display) ⁽³⁾	0	3	5	%
LMIN	Minimum display luminance @ max. gray level ⁽⁴⁾	-	0.2	0.5	cd/m ²
CR	White to Black Contrast Ratio	1,000:1	10,000:1	> 50,000:1	
CIE White	CIE-X	0.250	0.330	0.370	
CIE white	CIE-Y	0.350	0.410	0.420	
CIE D. 1	CIE-X	0.570	0.600	-	
CIE Red	CIE-Y	0.300	0.340	0.370	
CIE Green	CIE-X	0.180	0.310	0.330	
	CIE-Y	0.470	0.530	-	
CIE DI	CIE-X	-	0.165	0.190	
CIE Blue	CIE-Y	-	0.155	0.180	
GL	Gray Levels	-	256	256	levels
F _R	Refresh Rate	30	60	85	Hz
FF	Emissive Area/Total Sub-pixel Area		0.75		
ULA	End to end large-area uniformity	85 ⁽⁵⁾			%
Svh	Pixel spatial noise at ¹ / ₂ luminance ⁽⁶⁾ (1STD)			5	%
T _{ON}	Time to recognizable image after application of power			0.5	sec

Table 7-1 : SXGA-096 XLS Color Microdisplay Optical Characteristics Conditions: Ta = $+20^{\circ}$ C, VDD1.8 = +1.8V, VDD5 = +5V, VPG = -1.5V, Refresh rate: 60 Hz

Note 1: At the center of a display with all pixels on at gray level 255

Note 2: At the center of a display with all pixels on at gray level 255

Note 3: When using on-board eeprom values to set IDRF for the targeted luminance (See 9.4.5)

Note 4: Assumes IDRF = 06, DIMCTL = 64 and use of the PWM dimming mode (see 9.4.4).

Note 5: At gray level 255 and 700 cd/m2 luminance. Luminance uniformity measured between the nominal values of five 1,000 pixel zones located in the four extreme corners and the center zone of the display.

Note 6: Spatial noise is measured at half the nominal luminance (\sim 350 cd/m²) and gray level 255. The measurement is the ratio of the variability (standard deviation) by the mean luminance.

7.2 Characteristics over full operational temperature range (-46°C to +71°C)

Figure 9 below shows the luminance regulation over the full operational temperature range with the display operated with 50% of pixels turned on at gray level 255 and a room temperature luminance set to $\sim 800 \text{ cd/m}^2$.

The typical variability (defined as (Max-Min)/(Max+Min)) is 8%

Figure 9: Luminance stability vs. Temperature

Figures 9 and 10 show the stability of the White color point (CIE-X and CIE-Y) over the full operational temperature range at luminance set to 800 cd/m² at room temperature.

Figure 10: White CIE-X vs. Temperature @ 800 cd/m²

8. MECHANICAL CHARACTERISTICS

<u>Connectors J1</u> Manufacturer: Manufacturer Part Number:

Hirose DF12D(3.0)-30DP-0.5V

Mating Connector Information Manufacturer: Manufacturer Part Number:

Hirose DF12A(3.0)-30DS-0.5V

Weight: Printed Circuit Board Material: Printed Circuit Board Tolerances: < 3 grams FR4 ± 0.25 mm (both axes)

Figure 12: SXGA-096 Microdisplay Assembly

Figure 13: SXGA-096 Microdisplay Assembly - Detail

9. CARRIER BOARD SCHEMATIC

10. DETAILED FUNCTIONAL DESCRIPTION

10.1 Video Interface

The video interface signals are composed of 4 data pairs and one clock pair, which are the low voltage differential signaling (LVDS), and one control signal (LVDS_ALIGN), which is a CMOS signal. It is different from the industry standard LVDS interface protocols. The receiver input PADs expect the standard LVDS output signaling, but the serialization and protocol is different. The LVDS data pairs should be 8-bit serialized data. The LVDS clock also should be the serialized signal in the same way to the data channel with toggle pattern instead of PLL clock. It always should be 4 times faster than the pixel clock. The LVDS receiver uses both edges of clock. And it has a special skew compensation circuit to harmonize the skews among the 4 data pairs and the data alignment logic. The LVDS receiver expects the special skew compensation patterns through all LVDS channels including the clock channel when power is applied and the alignment patterns to identify the MSB of the 8-bits serial data at every VSYNC at least. (Refer to Appendix B)

Figure 15 shows how the LVDS channels map into data (R,G,B) and control signals

Note that a monochrome white implementation at reduced power is possible by using only channels RD2 and RD3 and setting bit 6 of register 2 (DISPMODE) to 1.

Bits	LVDS Data Channel						
DILS	RD0	RD1	RD2	RD3			
7	R7	G6 R0		B5			
6	R1	R1 G5 DE		B4			
5	R6	G1	HSYNC	B3			
4	R5	G0	ENABLE	B1			
3	R4	G4	VSYNC	BO			
2	R3	G3	B7	B2			
1	R2	G2	G7	B6			
0	VDMY1*	VDMY2*	VDMY3*	VDMY4*			

* : Dummy bits for line balance Figure 15: LVDS Data Map

	Video Format		LVDS Interface		
	Pixel Clock	Video Data	No. of Pins	LVDS Data rate	LVDS Clock
	MHz		(pairs w. clock)	Mbps	MHz
SXGA (60Hz)	91.00	24bit	5	728.00	364.00
1280X1024	91.00				
HD720 (60Hz)	74.50	24bit	5	596.00	298.00
1280X720	74.50				

Table 10-1: Example LVDS Interface Timing

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{CM}	Common Mode Input		1.0		1.8	V
	Range					
V_{TH}	Differential Input	$V_{CM} = +1.2V$			+100	mV
	High Threshold					
V _{TL}	Differential Input		-100			mV
	Low Threshold					
I _{IN}	Input Current	$V_{IN} = 1.8V$			±10	μΑ
		$V_{IN} = 1.0V$			±10	μΑ
F _{TCLK}	LVDS Clock	SXGA FR=60Hz		364	400	MHz
	Frequency					
TT _{TCLK}	LVDS Clock	F = 400 MHz			0.68	ns
	Transition Time					
DC _{TCLK}	LVDS Clock Duty	F = 400 MHz	45		55	%
	Cycle					
SKWMG	Receiver Skew	F = 400 MHz	200			ps
	Margin with Deskew					

Table 10-2: LVDS Characteristics

10.2 D/A Conversion

In this design the conversion of the video input signal into an analog drive signal at the pixel is carried out in a two-step process during each horizontal clock period. The digital input video data is first transformed into a precise time delay based on counts of the global RAMP clock. Second, the time delay triggers the column switch to sample the voltage of a linear ramp and to store the analog value on the column line capacitor. The selected pixel circuit copies the analog data and uses it for driving the OLED diode until it is refreshed during the next frame period.

A block diagram of one column drive circuit is shown in Figure 16. The 1292 Display registers form a line memory that facilitates a pipeline mode of operation in which video data is converted to analog form and sampled by the pixels in row M during the same line period that video data for row M+1 is loading into the LOAD registers. At the end of each line period the data in the LOAD registers is transferred in parallel into the DISPLAY line memory. The externally supplied SCLK clock is used for both loading input data into the chip and for advancing the global column counter. There is a maximum latency of 2 line periods before data is displayed.

Figure 16: Data sampling for Column N

A timing diagram for the data sampling process is shown in Figure 17. The internal Ramp Generator operates at the HSYNC frequency and outputs a linear ramp with a slow rise-time and a fast reset capability that is buffered and applied to all the pixel array columns simultaneously. The RAMP signal starts synchronously with HSYNC (after a delay) with a positive slope from a zero voltage level and rises to a voltage near the VDD5 rail after 1024 SCLK clock cycles as determined by a 10-bit counter. The

start position of the RAMP can be adjusted via register bits RAMPDLY, its peak value can be set using register VDACMX, and the duration of the flyback transition can be selected between two options by the FLYBTIME bit in register RAMPCTL.

Figure 17: Timing diagram for column data sampling

10.3 Format and Timing Control

Various control signals for the horizontal and vertical sequencers that are needed to implement the specified video formats are generated in the Timing & Control Logic block. The specific timing parameters are set by registers VINMODE, DISPMODE, LFTPOS, RGTPOS, TOPPOS and BOTPOS using the serial interface.

The display starts up with the array in the off-state (black) by default and requires a command to the DISPOFF register bit via the serial interface to turn the display on. This provides the user with an opportunity to change the default startup conditions before a video image is displayed.

Bi-directional scanning is supported in both orientations via the DISPMODE register. Bit VSCAN sets the vertical scan direction, and bit HSCAN sets the horizontal scan direction.

10.3.1 Vertical Position Control

To support the vertical positioning of the display within the extra 12 pixels provided on each column of the array, an on-chip shift register function is provided in the Row sequencer logic, and controlled by registers TOPPOS and BOTPOS. The starting row for the active video is determined by register TOPPOS and the ending row by register BOTPOS, which are set by default so the active window in SXGA mode is vertically centered in the array. The Vertical positioning logic will blank rows at the beginning and end of each frame of data to allow a vertical image shift of up to 12 pixels in steps of 1 or 2 pixels in SXGA mode.

10.3.2 Horizontal Position Control

To support the horizontal positioning of the display within the extra 12 pixel provided on each row of the array, an on-chip shift register function is provided after the LUT block, and controlled by registers LFTPOS and RGTPOS. The Horizontal Shifter adds black pixel data to the beginning and end of each line of data to allow a horizontal image shift of up to 12 pixels in steps of 1 pixel in SXGA mode.

10.3.3 Interlaced Modes

Bits SCMODE in the DISPMODE register are used to select either progressive (default) or interlaced modes.

Field status in interlaced mode is provided via the ENABLE input pin. The state of this pin is latched on the falling edge of VSYNC. When register bit SET_FIELD = "0" then a logic low at the ENABLE pin indicates that Field 1 (odd field) is active, and a logic high indicates that Field 2 (even field) is active. The opposite states are indicated when SET_FIELD is set to 1.

10.3.4 Stereovision Mode

The SXGA-096 is designed with binocular stereovision applications in mind. As a result of the fast OLED response time and the presence of a storage capacitor at each pixel, it has been verified that the microdisplay can operate at low refresh rates without showing flicker.

This allows the displays to be used with a frame or field sequential (more generally known as time sequential) stereovision mode using a single video input channel, and therefore providing a simple means to leverage the capabilities of PC compatible computers using stereo compatible graphics adapters, such as the NVidia GeForce series. The frame sequential stereovision mode supported should follow the Video Electronics Standards Association (VESA) Connector and Signal Standards for Stereoscopic Display Hardware. This standard is available from VESA at <u>www.vesa.org</u>.

The ENABLE input pin allows for a direct implementation of the VESA standard without additional external components. The microdisplay can be programmed for either an active high or low Enable, allowing a single signal to be used with two displays. In such a configuration, one display scans and displays while the other one holds and displays.

The ENABLE input acts, when set low, as a mask for HSYNC and VSYNC. It does not blank the display but prevents it from acquiring another frame of data until released. This is a real time input. The active state (high or low logic level) is programmed by the SET_ENABLE bit in the VINMODE resister.

The 3D-MODE bit of the DISPMODE register will be used to set either Time Sequential mode to activate the stereovision mode of operation (1) or Normal (non-3D) operation (0).

Frame Sequential Mode:

In Time Sequential Mode each video frame contains information for either the left or right eye. When 3D-MODE="1" the SCMODE bits in the DISPMODE register are set to Progressive Scan Mode (00H) for frame sequential mode. The following description for Frame Sequential operation assumes the source is in compliance with the VESA standard mentioned above, where the data for the left eye is provided while the Enable signal is at the logic high level, and the data for the right eye display is provided while the Enable signal is at the logic low level. The stereovision mode is controlled by both the Enable input pin and by the SET_ENABLE bit of the VINMODE register. The Enable input signal is sampled into the circuit by a flip-flop clocked on the falling edge of VSYNC and the sampled value is used for the next frame. (The Enable signal is generated by the graphics software and may not be synchronized to the VSYNC signal).

To activate the stereovision mode, the right eye display needs to be configured with Enable active low (SET_ENABLE= "0"). This will allow the right eye microdisplay to hold the previous frame while the Enable input is high. The left eye display must be configured with Enable active high (SET_ENABLE="1"). Thus the two Enable inputs can be tied together to the incoming Stereo Sync signal provided by the graphics adapter (or other custom source).

Field Sequential Mode:

In Field Sequential Mode each video field in an interlaced image contains information for either the left or right eye. Consequently, the resolution is reduced in half for each display.

When 3D-MODE="1" the SCMODE bits in the DISPMODE register are set to either Interlaced or Pseudo Interlaced Mode to activate field sequential mode. The operation of the Enable input pin and the SET_ENABLE bit will be similar to Frame Sequential Mode except that now the Enable input toggles at the field rate. The polarity of the field corresponding to the active state of the ENABLE input will be set by the SET_FIELD bit in the VINMODE register. When SET_FIELD="0" the odd field is applied during the active state for ENABLE, and the even field is assumed during the active state for ENABLE when SET_FIELD="1".

For standard WVGA operation, the SET_ENABLE bit needs to be set to 0 (logic low), which is the power-on default value, and the Enable pin input needs to be tied to Ground.

10.3.5 Row Duty Rate Control

The duty rate for a row of data is defined as the fraction of a frame period during which the pixels maintain a programmed value; for the remainder of the frame period the pixels will be driven to black.

A Row Reset function is provided in the SXGA096 to allow the duty rate of rows to be controlled between 0 and 100% (default condition). The register ROWRSET[9,0] is used to set the number of Hsync cycles during which the pixel data is driven to black during a frame period. For ROWRSET=0 the pixel data is never driven to black and the duty rate for pixel data is equal to 100% (default). For ROWRSET=W the pixels in any row are driven to black for the final 2*W Hsync cycles in an active frame period.

Figure 18 : Timing diagram showing Row Reset functionality.

The operation of the Row Reset function is depicted in the timing diagram shown in Figure 18. All the pixels contained in ROW N are programmed during the Nth horizontal line scan following the initialization line scans which occur at the beginning of a video frame. Normally this pixel data is stored in the pixel and remains unchanged until it is refreshed during the next frame period. When the Row Reset function is activated, the pulse RS_N is generated at a position determined by the value of register ROWRSET. For example, when the register value is equal to W the rising edge of RS_N occurs exactly 2*W Hsync cycles after the programming cycle for ROW N. The pulse RS_N sets all the pixels in ROW N to black until the next programming cycle. All rows in the array will operate at the same duty rate. As a result the duty rate for all the rows in the pixel array will be given by

$$ROW_DUTY = \frac{2 * W * T_{HSYNC}}{T_{FRAME}}$$

This function can be used to control dimming (see section 9.4.5) to extend the display dimming range. A side benefit of this function, when used for dimming, is that no gamma update is needed when dimming is done exclusively with the Row Reset function.

Another use of this function is to reduce motion artifacts: the net visual effect of limiting the ontime of a given row is a reduction in visual persistence. This allows the eye to "forget" the state of the row prior to its update with potentially new information, and leads to the perception of a smoother motion when an object in the image changes position from frame to frame. The exact value of the Row Reset registers for this function are application dependent and the user must determine what constitutes an acceptable configuration.

10.4 Sensor Functions

10.4.1 Temperature Readout

An on-chip temperature sensor provides continuous device temperature information via the serial interface. The sensing circuitry allows for calibration at power-up via dedicated registers, TREFDIV[5,0] and TEMPOFF[7,0]. The temperature reading is digitized on-chip and stored in a dedicated register, TEMPOUT[7,0]. A register bit, TSENPD in register ANGPWRDN, is able to power down the sensor.

The temperature sampling period is controlled by register TUPDATE[7,0] which allows the temperature reading to be updated between every 50msec to 4.25sec when operating at a 60Hz frame rate.

10.4.2 Luminance Regulation Sensor

Register VGMAX[7,0] controls the pixel drive voltage used for regulating the maximum luminance value. By default this level is set to about 4.95V when the VDD5 supply is equal to 5V to avoid saturating the video buffers. It can be adjusted over a range of 4 to 5V.

Register VDACMX[7,0] is used to set the maximum value of the internal Ramp DAC generator. This value should match the internal VGMAX setting for best luminance accuracy and control. The optimum setting has been determined by measurements to be 7A for normal operating conditions. Refer to section 12.12 for more detail.

10.4.3 Pixel Bias Sensor

Register BIASN[2,0] sets a bias current for the OLED array in order to achieve improved control of black level and color saturation at the expense of a small increase in power consumption. In the default setting (BIASN=1) the bias contributes to a 10mW increase of power consumption for the array. It is recommended to use the BIASN=3 setting for best performance.

10.4.4 Luminance Control (Dimming)

A variable luminance level is achieved by controlling the maximum pixel current while maintaining the largest possible dynamic range. Dimming control for the display is effected by adjusting the 7-bit register DIMCTL via the serial interface to provide 128 linear steps in brightness ranging from near zero to the maximum level set by register IDRF. This functionality is only available for VCOMMODE=0 or 1.

The bits IDRF_COARSE in register IDRF provide a coarse adjustment of the maximum luminance level, while the IDRF_FINE bits enable the coarse level to be fine-tuned. Figure 19 shows the typical luminance output at gray level = 255 in a color display for various settings of the IDRF and DIMCTL registers.

The IDRF functional block design results in duplicate luminance settings (see the detailed IDRF register description in section 11.18)

Figure 19: luminance profile for various IDRF settings

The XLS technology used in this display has a different Luminance-Voltage characteristic than the XL technology. This difference mandates a dedicated technique in order to achieve the full dimming range without image artifacts. The information below describes the register settings required when operating the SXGA-096 Color XLS microdisplay at low luminance levels (below 50-60 cd/m² typically).

The display background will begin the show an unstable behavior below 50-60 cd/m² (the actual value may vary from display to display). This level can reached by a combination of IDRF and DIMCTL values. One such combination is IDRF ~ 05h and DIMCTL = 64h. Lowering either value will lead to noticeable unstability.

For luminance levels $< 50-60 \text{ cd/m}^2$:

- Set VCOMCTL (register 0Fh) to 11h
- Set NVCK0 (register 34h) to 30h
- Set NVCK1 (register 35h) to 03h
- Set DIMCTL (register 13h) to 64h
- Set IDRF (register 12h) to 06h
- Use ROWRSET (registers 07h and 08h) to adjust the luminance down to the minimum One advantage of this method is that no gamma update is required as the luminance is changed (a gamma update is still required if the temperature changes by more than 5°C)

For luminance levels $> 50-60 \text{ cd/m}^2$:

- Set VCOMCTL (register 0Fh) to its power-on default value of 3Dh
- Set NVCK0 (register 34h) to its power-on default value of 99h

- Set NVCK1 (register 35h) to its power-on default value of 99h
- Use any combination of IDRF and DIMCTL and/or ROWRSET to achieve the targeted luminance, keeping IDRF greater than or equal to 05h. DIMCTL can be decreased once IDRF is greater than 50h but cannot go below 30h-32h without causing image unstability.

Figure 20 below illustrate one actual example using an SXGA-096 CF XLS microdisplay with the different register settings.

Figure 20 Dimming Profile

Due to variability from display to display, the minimum useable IDRF value will also vary. 05h is a reasonable starting point.

When the VCOMCTL register are changed for the lower luminance dimming mode, register IDRF needs to be increased slightly in order to match the same luminance obtained at the minimum IDRF with the default VCOMTCTL value.

Table 2 below shows one actual example of the luminance value obtained using the two different modes (IDRF and PWM dimming modes)

Dimming Mode	IDRF	DIMCTL	ROWRSTH	ROWRSTL	VCOMCTL	NVCK0	NVCK1	L (cd/m2)
PWM Dimming	6	64	0	0	11h	30h	03h	51
IDRF Dimming	5	64	0	0	3Dh	99h	99h	50

Table 2 Matching luminance using PWM and IDRF Dimming Modes

10.4.5 Luminance Setting

The SXGA-096 microdisplay luminance can be set to an absolute value using information included in the on-board eeprom at addresses 0x8E to 0x90.

The luminance is a linear function of IDRF for values of IDRF greater than 32 (decimal code).) that can be expressed as:

L = slope x IDRF (decimal) - intercept

The information in registers 8Eh (142d) to 90h (144d) provides the slope and intercept values that govern the Luminance vs. IDRF linear equation.

Register 0x8E provides the integer part of the slope

Register 0x8F provides the fractional part of the slope

Registers 0x90 and 0x91 provide the origin value (Theoretical luminance value for IDRF = 0. It is theoretical because the linear equation is only valid for IDRF >20h (32 decimal)). Values for Origin range from 0 to 65535.

Register 0x90 is the low-byte register Register 0x91 is the high-byte register

The slope and intercept values are calibrated for each display. With these values, the calculated luminance is in cd/m^2 units (nits).

The accuracy of the calculated value is smaller than or equal to 3% for a luminance up to 400 cd/m^2 , and better than 5% beyond 400 cd/m^2 .

This allows precise matching between displays when used in a binocular application, as well as exceptional consistency of performance from display to display.

10.4.6 Gamma Correction Sensor

The gamma sensor is provided as an aid to generating a linear optical response from the SXGA-096 display system. As described previously, an external 256-entry look-up-table is required to transform input video data into a gamma-corrected data signal for driving the microdisplay input port. The SXGA-096 display generates an internal real-time representation of the gamma correction curve for the current operating conditions. This representation is in the form of an analog voltage waveform which can be sampled one point at a time at the VGN pin for eight specific values on the curve. A specific value VGN_i , corresponding to one of 8 internally fixed grayscale levels GL_i , is selected by setting bit IDSTEP in register GAMMASET via the serial port. The VGN signal is internally fixed for a full-scale output range of VDD5/2. Eight sequential measurements are required to complete the gamma table. The gamma table can then be used to reconstruct an approximation of the ideal gamma correction curve using piece-wise linear interpolation, or by employing a curve fitting algorithm to achieve more accuracy if desired. This function is only available for VCOMMODE=00h.

An external A/D converter is required to convert each VGN measurement into digitized form and to store the values in a microcontroller for further processing. A full frame period following a change in the IDTEP bit should be provided to allow the VGN signal to settle before sampling it to 10-bit precision by
the external A/D converter. It is recommended to sample the VGN signal during the frame blanking interval for best results.

The VGN readings are normalized and converted to a 10-bit full-scale word *DVGN_i[9,0]* using the following expression:

$$DVGN_i[9,0] = \frac{VGN_i}{VGN_{MAX}} * 1023$$

where VGN_{MAX} is VDD5/2. Each of these data values must be further multiplied by a correction factor CF_i to obtain the Gamma table coefficients as follows:

$$GC_i[9,0] = DVGN_i * CF_i$$

where empirically determined values for factor CF_i are given in Tables 10-3 and 10-4.

The correction factors need to be adjusted depending on the luminance level in order to produce the best response.

Table 10-3: Correction Factor values for L ~ 800 cd/m^2

CF1	CF2	CF3	CF4	CF5	CF6	CF7	CF8
0.76	0.9	0.955	0.96	0.97	0.974	0.978	0.984

Table 10-4: Correction Factor values for L ~ 10 cd/m^2

CF1	CF2	CF3	CF4	CF5	CF6	CF7	CF8

Using the derived values for GC_i and their corresponding grayscale coordinates GL_i , the 8-entry Gamma Correction table consisting of data points $Q_i = (GL_i, GC_i)$ can be constructed. The outcome of a typical gamma sensor measurement and calculation procedure is shown in Table 10-5, for a white luminance ~150 cd/m².

i	1	2	3	4	5	6	7	8
IDSTEP[0]	Oh	1h	2h	3h	4h	5h	6h	7h
VGN _i (volt)	1.263	1.288	1.309	1.344	1.415	1.510	1.631	1.798
GC _i (dec)	702	416	727	747	786	839	906	999
GL _i (dec)	2	4	8	16	32	64	128	255

Table 10-5: Sample Gamma Correction Table

The full 256-word LUT is derived from the Gamma Coefficient Table using linear interpolation to generate intermediate data points as illustrated in 7. The input to the LUT for each color of the video source is represented by the 8-bit signal VIN[7,0], and the output of the LUT (which is also the input to the microdisplay) is represented by the 10-bit signal DIN[9,0]. For example, the Y coordinate for the intermediate point Q(x, y) on the line segment formed between the gamma table points Q6 and Q7 is obtained by:

$$Y = Y_6 + (Y_7 - Y_6) * \frac{(X - X_6)}{(X_7 - X_6)}$$

The intermediate points for other line segments are found in similar fashion. A software routine in the system microcontroller is used to perform the necessary calculations before loading it into the data-path LUTs in the microdisplay. A buffer LUT is used in the microdisplay to temporarily store the data as it is transferred from the microcontroller via the serial port. When the buffer LUT is full, the data can be rapidly transferred to the data-path LUTs during a frame blanking time to avoid disturbing the displayed image.

Figure 21 : Generating intermediate points by linear interpolation

A smooth transition of the gamma curve at the lowest gray levels is essential for best performance of the display at the black end of the gray scale. Refer to Figure 22 for an illustration of the recommended approach for calculating the gamma curve at low gray levels. The LUT data points for gray levels 1 to 4 can all be generated by linear extrapolation from the gamma points Q1 and Q2. The LUT data point for

gray level 0 (also defined as Q0) is a fixed value that is user-defined, and normally should be set to a very low value, e.g. 1, to ensure the best black level. The value for Q0 is shown on the graphical interface screen supplied with the SXGA-096 design reference kit for user convenience. It is not affected by the gamma sensor signal and can only be changed manually by user input.

Figure 22 : Gamma curve at low gray levels

Figure 22 and Figure 23 show a typical gray scale response for a Gamma = 1 at different luminance values $(150 \text{ cd/m}^2 \text{ and } 5 \text{ cd/m}^2)$

Figure 23: Typical Luminance Gamma Response

Figure 24: Low Luminance Gamma Response

An arbitrary optical response function for the microdisplay can be obtained by performing an additional operation on the gamma coefficients before generating the gamma correction curve as described

previously. For example, the relationship between the output luminance of the display (y) and the gray level input to the LUT (x) can be defined in terms of the system gamma (γ) by the following expression:

$$y = x^{\gamma}$$

The corresponding gamma coefficients are then given by the following expression:

$$GC_{i}^{\gamma} = \left(\frac{VGN_{i}}{VGN_{MAX}} * CF_{i}\right)^{\gamma} * 1023$$

For the case of a linear optical response (γ =1) this expression reduces to the simpler form given previously. Examples of gamma curves generated from the same VGN values for different settings of the System Gamma parameter are shown in Figure 25 and the corresponding system response curves for the display are given in Figure 26.

The System Gamma function is implemented in DRK Firmware and is accessible to the user in the DRK GUI Software .

Figure 25 : Gamma curves for arbitrary System Gamma

Figure 26 : Display system response for arbitrary system gamma

10.5 DC-DC Converter

An on-chip dc to dc converter controller allows for the generation of the OLED cathode supply, relying on a few external passive components assembled on the display carrier board. The converter is an adjustable inverter that converts VDD5 to a negative supply used to bias the OLED via the VCOM input pin. Adjustment is managed by the control logic and registers VCOM[7,0], VCOMCTL[7,0] and VCOMMODE[3,0].

The converter adjustment comes from two sources:

- A nominal value set in a dedicated register that provides for the room temperature voltage level.
- The output of an internal VCOM sensor circuit. This feature can be enabled/disabled via register setting to allow full external control (via register VCOM).

A block level schematic of the Cuk converter that is employed in the SXGA-096 application is shown in Figure 27.

Figure 27 : Schematic of DC-DC controller function

Three modes of operation, selected via register VCOMMODE, are provided for the controller function. Mode 1, selected by default (VCOMMODE=0), activates the Automatic Loop which provides VCOM regulation based on an internal current feedback sensor. In this mode the cathode supply is automatically regulated in order to maintain a constant maximum OLED array current over changes in temperature and luminance. The cathode voltage will tend to rise in absolute value as the luminance level is increased or the operating temperature is reduced.

Mode 2, selected by setting VCOMMODE=1h, is a hybrid control mode that prevents the absolute value of the cathode supply from becoming too small at higher temperatures, but allows it to increase at low temperatures where it is needed to ensure a stable regulated OLED current. Both the AUTO and MANUAL control loops are running simultaneously in this mode with one taking charge above a user defined threshold (set by register VCOM) and the other below that threshold. For relatively low temperatures and high luminance levels the AUTO mode will be in control and the cathode supply will follow the trajectory shown in Figure 28. If operating conditions try to force the absolute value of the cathode supply to drop below the threshold, then the control switches to MANUAL mode and the regulated supply remains fixed at the VCOM level.

Figure 28 : VCOM supply characteristic in Mode 2

Mode 3, selected by setting VCOMMODE=2h, activates the Manual Loop which provides a fixed cathode supply based on a cathode voltage feedback signal. The actual value of the cathode voltage is controlled over a range of 0 to -6V by setting register VCOM. Its default value is about -2.3V. In this mode the dimming and luminance regulation functions via IDRF and DIMCTL are not operational. Luminance is controlled directly via the VCOM register setting in this mode instead.

10.6 Serial Interface

The serial interface consists of a serial controller and registers. The serial controller follows the I2C protocol. An internal address decoder transfers the content of the data into appropriate registers. The protocol will follow the address byte followed by register address data byte and register data byte sequence (3 bytes for each register access):

Serial address with write command Register address Register data

The registers are designed to be read/write. Read mode is accomplished via a 4 byte sequence:

Serial address with write command Register address

Serial address with read command

Register data

RANDOM REGISTER WRITE PROCEDURE

RANDOM REGISTER READ PROCEDURE

The serial controller is capable of slave mode only.

The x in the 7-bit address code is set by the SERADD input pin and is provided to allow a dual display and single controller configuration.

Slave Address: 010011X where X = 0 or 1 depending on the status of the SERADD pin. This is summarized in Table 10-5.

Write Mode: Address is 4C (or 4E if SERADD = 1)

Read Mode: Address is 4D (or 4F is SERADD =1)

Sequential Read/Write Operation

The serial controller allows for both sequential and read operational modes. For either mode, the host needs only set the initial register address followed by as many data bytes as needed, taking care not to issue a STOP condition until all desired data bytes have been transmitted (or received).

It is possible to run the I²C interface without source clock or any sync signals.

Interface maximum frequency: 400 KHz.

	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0	Address (Hex)
							SA	R/W	
Write	0	1	0	0	1	1	0	0	4C
Read	0	1	0	0	1	1	0	1	4D
Write	0	1	0	0	1	1	1	0	4E
Read	0	1	0	0	1	1	1	1	4F

 Table 10-6 : I2C Address Summary

10.7 Power-On Sequence

To ensure proper startup and stabilization of the display the following power-on sequence is recommended:

- 1. Turn on VDD1.8, VDD5 and VPG supplies (these can be simultaneous)
- 2. A ramp-up time of 0.2 to 20ms for VDD5 and VDD1.8 is recommended for best performance
- 3. The ramp-up time for VPG is not critical and it can be turned on anytime
- 4. Configure the display registers to the desired startup state
- 5. Turn on the display by setting the DISPOFF bit in register DISPMODE to "0"

Figure 29 shows the timing diagram for the power supplies and control signals during startup when the display is first turned on. The external supply voltages (VDD5, VDD1.8, and VPG) can all be applied at the same time as in the diagram. An internal power-on-reset signal is triggered when both the VDD5 and VDD1.8 voltages exceed a built-in threshold level. After a delay of about 70ms the internal dc-dc controller is activated which generates a negative supply for the common cathode of the array. The video display is enabled 20ms later and video is displayed on the array after the DISPOFF bit has been set to "0" via the serial port. Prior to this moment the pixels in the array are actively driven to the black state. The pin RESETB must also be logic high before any registers can be written.

Figure 29 : Power-Up sequence for supplies and control.

During the power down operation, the supply rails should be switched off in the reverse order to the power up sequence. When the POR function detects a drop in the VDD1.8 supply below a minimum operating threshold it will immediately switch off the Row and Column sequencing circuits. At the same time the VCOMMON supply will be turned off followed by the 5V array supply. The power-down sequence is illustrated in Figure 30.

10.7.1 Display Off Function

On power-up the microdisplay sets all internal registers to their default values and holds the array in the black state until the DISPOFF bit (bit 7) in register DISPMODE is set to 0. The DISPOFF bit, when set to 1, will force all pixels to the off (black) state.

10.8 Power Savings Modes

The circuit shall provide power down modes to minimize power consumption. This can occur in two ways:

- Sleep mode manually controlled via the PDWN bit in register SYSPWRDN, the entire display chip is powered down except for the serial interface. The register settings are saved and restored on power up from this mode.
- Individual block control many functional blocks have the option to be turned off individually via control of registers ANGPWRDN and SYSPWRDN.

10.9 Built-In Test Patterns

The IC includes functionality to simplify the external hardware requirements for test of OLED microdisplays and applications. The display is self-powered for this mode with no external video, sync, or clock signals required. The display starts in this mode with a simple, flat white field at maximum luminance by default and without the need for register setting.

The BI mode is activated at start-up when a dedicated pin TMODE is set to logic level 1 or PATTEN bit in register TPMODE is set high. The internal dc-dc converter oscillator is used to generate the basic timing sequence (VSYNC, HSYNC, and SCLK). The vertical frequency will be set to 60Hz.

By default an all-pixels-on pattern will be displayed. The following extra test patterns are included and are accessed via the serial interface:

• 16 level gray scale, checkerboard, alternating rows and columns, cross-hatch line pattern

Figure 31 illustrates the application setup for the chip in BI mode using the built-in test functionality.

Figure 31 : Block diagram of setup for BI mode

11. REGISTER MAP SUMMARY

Reset	I2C Slave	Address : 010					
01 VINMODE RV 7 0 PC Register Write Detable 0	Address (Hex)	Name	Access			Value	
01 VINMODE RVV 0 0 wine Enable, 1 = Write Protected (Read Only) 01 VINMODE RVV 5 0 DVGA video inqui mode enable 01 VINMODE RVV 4 0 ENABLE Active Level 1 DVGA video inqui mode enable 0 = KAVA video inqui mode enable 01 RVV SET_FIELD 3 0 = Cod Field when ENABLE Active Level 01 SET_FIELD 3 0 = Cod Field when ENABLE Active Level = Video Video inqui video innable (Detected polarity overrid 02 DYSNC POL 1 1 VSYNCPOL/NCVPON/NCPOL/O = Cod Field when ENABLE Active Level 03 LEFYPOL 1 1 VSYNCPOL/NCVPON/NCPOL/O = Cod Field when ENABLE Active Level 04 DISPOFF 7 1 Dispory Off Bohn Tenable Nonco 05 DISPOFF 7 1 Dispory Off Bohn Tenable Nonco 05 DISPOFF 7 1 Dispory Off Bohn Tenable Nonco 06 Cod MacALEN <	00	STAT	R	REV	2-0	0	Silicon Revision Number
01 VINMODE RW Second SET_ENABLE 6 0 Do Nat Change 01 VINMODE SET_ENABLE 4 0 DVGA 5 0 DVGA does input mode, 1 = DVGA video mode 01 VINMODE RW SET_ENABLE 4 0 ENABLE active low Extended on the mode, 1 = DVGA video mode 01 VINMODE RW SET_ENABLE 3 0 FEEL Delany Extended on the mode (Delected polarity delection mode) Delected polarity delection mode) Delected polarity delection mode) Delected polarity delection mode) Delected polarity delection polarity delection polarity delection polarity overtid 01 DISPNOCE 1 1 NVKVPC/LVSVVPC/LSVVPC/LVS				WRDISABLE	7	0	
01 VINNODE R/V SET_FINABLE 4 0 0 = SXA video mode, 1 = DVGA video mode 01 VINNODE R/V SET_FINABLE 4 0 0 = RNABLE active low, 1 = ENABLE active high 01 VINNODE R/V SET_FIELD 3 0 0 = Odd Field view low, 1 = ENABLE active high 02 DATE Auto BYNC/SYNC Q = Datity 0 = Odd Field view INABLE Active, 1 = Exemption anable (Detected polarity overrid VSYNCPOL 1 1 USYNC/COL/FIN/C/SYNC Q = Datity 0 = Odd Field view INABLE Active, 1 = Exemption anable (Detected polarity overrid VSYNCPOL 1 1 USYNC/COL/FIN/C/SYNC Q = Datity 0 = Odd Field view INABLE Active, 1 = Exemption Sync. 02 DISPMEDE R/V DISPOFF 7 1 Detection Sync. 1 = Monte Sync. 03 DISPMEDE R/V MONO 6 0 0 = Odd Field view INT = Datity 0 = Odd Field view INT = Odd Field view IN				Reserved	6	0	
01 VINMODE RW SET_ENABLE 4 0 EVALUATION CONTINUE 01 VINMODE RW SET_FIELD 3 0 EVALUATION CONTINUE EVAL					5	0	DVGA video input mode enable
OI VINMODE RW SET_FELD 3 0 0 0 0 FIGE Delaity 0<				DVGA	,	0	
OT UNMODE NW SE I_FEB 3 0 0 - Odd Field when ENABLE-Active 4 AUTOSYNC 2 1 AutoSYNCPOL 1 AutoSYNCPOL 0 - Dealer, 1 = Enable 4 AUTOSYNC 2 1 VSYNCPOL 1 0 Negative Sync, 1 = Positive Sync 9 VSYNCPOL 1 1 VSYNCPOL 1 0 Negative Sync, 1 = Positive Sync 10 HSYNCPOL 0 1 Despate Sync, 1 = Positive Sync 1 0 Negative Sync, 1 = Positive Sync 0 0 Color display mode 0				SET_ENABLE	4	0	
02 DISPMODE 2 1 VSYNCPOL 1 0 VSYNCPOL 03 HSYNCPOL 1 1 0 Negative Sync. 1 = Positive Sync 04 HSYNCPOL 0 1 0 Negative Sync. 1 = Positive Sync 05 DISPOFF 7 1 Desplay Off (BURNIN mode override to ON) 0 05 DISPOFF 7 1 Desplay Off (BURNIN mode verride to ON) 0 06 DISPOFF 7 1 Desplay Off (BURNIN mode verride to ON) 0	01	VINMODE	R/W	SET_FIELD	3	0	
02 USYNCPOL 1 0 Negative Sync. 1 0 Negative Sync. 02 HSYNCPOL 0 1 1 0 Negative Sync. 1 0.5 Negative Sync. 02 DISPOFF 7 1 Desplay Off (UBNN mode overhele to ON). 0.5 Negative Sync. 1 0.5 Negative Sync. 02 DISPMODE RW 6 0 0.5 Cold display mode, 1.= Mono display mode (Green video input data used as mono video). 02 DISPMODE RW 5 1 0.5 Pagas literial Gamma LUT 1.1 Ensel (BUNNI mode overhide to Bynass Internal Gamma). 0.5 School (Green video input data used as mono video). 03 LETPOS RW 3D-MODE 4 0 0.5 Normal Signity Mode. 0.5 Normal Signity Mode. 0.5 Control (Green video input data used as mono data). 03 LETPOS RW 7.0 06 Column Deplay Lett Postion 0.5 Control (Green video input data used as mono data). 04 RGTPOS RW 7.0 06 Column Deplay Lett Postion 0.5 Control (Green video Sinc. 0.5 Control (Green video Sinc.				AUTOSYNC	2	1	Auto HSYNC/VSYNC polarity detection enable (Detected polarity overrid VSYNCPOL/HSYNCPOL)
02 DISPMODE 0 1 HSYNC Polarity HSYNC Polarity HSYNC Polarity 02 DISPMODE RW DISPOFF 7 1 Display Off BURNIN mode override to DN) 02 DISPMODE RW 6 0 0 Color display mode 03 DISPMODE RW 5 1 Internal Gamma LUT f. ause Internal Gamma LUT, 1 = use Internal Gamma LUT 04 0.5 Display, DAT Timeral Gamma LUT, 1 = use Internal Gamma LUT, 1 = use Internal Gamma LUT 0 = Spass Internal Gamma LUT, 1 = use Internal Gamma LUT 05 DISPNODE 4 0 Display, Mode 0 = Syss Internal Gamma LUT, 1 = use Internal Gamma LUT 06 OP Progressive or Internal Gamma LUT, 1 = use Internal Gamma Gamma LUT 0 Internal Gamma LUT, 1 = use Internal Gamma CUT 07 DISPNODE 4 0 Display, Mode 0 = Horizato Saca Direction 08 ROWRESET RW 7.0 0 6 Column Display Left Position 0 07 R 7.0 0 6 Colum Display Left Position				VSYNCPOL	1	1	,
02 DISPMODE RW 7 1 Display Of (19UNN) mode override to ON) 0 = Deplay On (1=Deplay On (1=Deplay Of (19UNN) mode override to ON) 0 = Deplay On (1=Deplay On (1=Deplay Of (19UNN) mode override to Synas Internal Gamma LUT mono video) 02 DISPMODE RW 6 0 0 = Color display mode, 1= Mono display mode (Green video input data used as mono video) 03 DISPMODE 4 0 3D bisplay Mode 1 = use Internal Gamma LUT 1 = use Internal Gamma LUT 04 RAMPAL 5 1 Internal Gamma LUT is use Internal Gamma LUT 1 = obstay 05 SCMODE 3.2 0 Progressive or Interfaced scan mode select 0 = hormal Display, 1 = Time Sequential Mode 03 LFTPOS R/W 7-0 06 Column Display Right Position 0 = for to Bottom Scan, 1 = Bottom to Top Scan 04 RGTPOS R/W 7-0 06 Column Display Right Position 05 TOPPOS R/W 7-0 06 Row Display Bottom Position 07 ROWRESET R/W 7-0 06 Row Display Top Position 08 BOTPOS R/W				1101/010001			
02 DISPMOPE 7 1 0 = Display Onf 1 = Display Off 02 DISPMODE RW 6 0 0 = Color display mode 1 = Mono display mode 02 DISPMODE RW 3D-MODE 4 0 Display Mode 1 = Mono display mode 1 = Mono display mode 02 DISPMODE RW 3D-MODE 4 0 2 Display Mode 1 = Mono display fill				HSYNCPOL	0	1	0 = Negative Sync, 1 = Positive Sync
02 DISPMODE RW 6 0 0 Clore display mode 1 Mono display mode (Green video input data used as mono video) 02 DISPMODE RW 3D-MODE 4 0 0 Clore display mode 1 Times Aguama LUT 1 = use Internal Gamma LUT 02 DISPMODE 4 0 2 0 Progressive or Interlaced scan mode select 0 - Normal Display, 1 = Times Aguama Mode 03 LETPOS RW 7-0 0 - Top to Bottom Scan, 1 = Bottom to Top Scan -				DISPOFF	7	1	
02 DISPMODE RVW MONO 6 0							
02 DISPMODE R/W GAMMA_EN 5 1 Internal Gamma LUT Enable (BURNIN mode override to Bypass Internal Gamma) 0 - Bypass Internal Gamma LUT 1 0 9 Bypass Internal Gamma) 0 Bypass Internal Gamma) 0 - Bypass Internal Gamma) 0 0 Bypass Internal Gamma) 0 - Bypass Internal Gamma) - Bypass Internal Gamma IUT <th< td=""><td></td><td></td><td></td><td>MONO</td><td>6</td><td>0</td><td>0 = Color display mode, 1 = Mono display mode (Green video input data used as</td></th<>				MONO	6	0	0 = Color display mode, 1 = Mono display mode (Green video input data used as
O2 DISPMODE RW S 1 0 = Bypass Internal Gamma LUT, 1 = use Internal Gamma LUT 02 DISPMODE 8 3D Display Mode 3D Display Mode 3D Display Mode 03 Display Mode 0 0 = Normal Display, 1 = Time Sequential Mode 0 04 RGTMODE 3-2 0 0 = Progressive, 01 = Interfaced, 1X = Pseudo Interaced 03 LEFTOS RCW 1 0 Vertical Scan Direction 04 RGTPOS RCW 7-0 06 Column Display, 1 = Time Sequencin to Top Scan 05 TOPPOS RW 7-0 06 Column Display, Top Position 06 BOTPOS RW 7-0 06 Row Display Top Position 07 ROWRESET RW 7-0 06 Row Display Bottom Position 07 ROWRESET RW 7-0 06 Row Display Editor Position 07 RAMPON 5 0 Internal Ramp Editor Motior Enable 12 RAMPON 12 0 Row Celse Twork on UNENABLED F				0.000	_		
Image: served				GAMMA_EN	5	1	
Progressive or Interfaced scan mode select O = Normal Display, 1 = Time Sequential Mode 9 9 Progressive, 01 = Interfaced, 1X = Pseudo Interaced 03 LFTPOS R/W 7-0 0 0 Progressive, 01 = Interfaced, 1X = Pseudo Interaced 04 RGTPOS R/W 7-0 06 Column Display, 1a Time Sequencial Mode 05 ILFTPOS R/W 7-0 06 Column Display, 1a Time Sequencial Mode 06 BOTPOS R/W 7-0 06 Column Display, 1a Time Sequencial Mode 06 RGTPOS R/W 7-0 06 Column Display, 1a Time Sequencial Mode 07 ROWRESET R/W 7-0 06 Row Display Top Position 07 RW 7-0 06 Row Display Bottom Position Rottor 07 RWRESET R/W 7-0 06 Row Display Entrop Position 07 RWRESET R/W 7-0 06 Row Display Entrop Position 08 ROWRESET R/W R/Po 0 Internal Ramp Editer Monito	02	DISPMODE	R/W	3D-MODE	4	0	
SCMODE 3-2 0 00 Progressive, 01 = Interfaced, 1X = Pseudo Interaced VSCAN 1 0 Vertical Scan Direction 0 Tertical Scan Direction 03 LFTPOS RW 7-0 06 Column Display Left Position 04 RGTPOS RW 7-0 06 Column Display Left Position 05 TOPPOS RW 7-0 06 Column Display Left Position 06 BOTPOS RW 7-0 06 Row Display Dop Position 07 07 0 08 ROWRESET RW 7-0 06 08 ROWRESET RW 7-0 06 Row Display Dop Control 0 Disoble, Each line displayed ROWRESET'2 Line period 0 07 08 ROWRESET RW 7-0 0 Row Display Bottom Position 0 Disoble, Each line displayed ROWRESET'2 Line period 0 Disoble, Each line displayed ROWRESET'2 Line period 0 Disoble, Each line displayed ROWRESET'2 Line period 0 Disoble, Social High 0 Do Noraci Line Adisplaye						, ,	
VSCAN 1 0 Vertical Scan Direction 03 LFTPOS RW - Top to Bottom Scan, 1 = Bottom to Top Scan 03 LFTPOS RW - 70 06 Column Display Left Position 04 RGTPOS RW - 70 06 Column Display Right Position 06 BOTPOS RW - 70 06 Row Display Bottom Position 07 08 ROWRESET RW - 70 06 Row Display Bottom Position 07 08 ROWRESET RW - 70 06 Row Display Column Position 09 RAMPCTL RW - 70 06 Row Display Column Position - 70 09 RAMPCTL RW - 70 0 Row Display Column Position - 70 09 RAMPCTL RW - 70 0 Internal Ramp DAff Monitor Enable - 70 10 Internal Ramp DAff Monitor Enable - 70 0 Internal Ramp DAff Monitor Enable - 70 09 RAMPCTL RW - 10 <td></td> <td></td> <td></td> <td>SCMODE</td> <td>3-2</td> <td>0</td> <td>•</td>				SCMODE	3-2	0	•
VSCAN 1 0 0 = Top to Bottom Scan, 1 = Bottom to Top Scan 03 LFTPOS R/W 7-0 06 Column Display Left Roght Scan, 1 = Right to Left Scan 04 RGTPOS R/W 7-0 06 Column Display Left Position 05 TOPPOS R/W 7-0 06 Row Display Bottom Position 06 BOTPOS R/W 7-0 06 Row Display Bottom Position 07 70 06 Row Display Bottom Position 0 Disbable, Each line displayed ROWRESET*2 Line period 08 ROWRESET R/W 9-8 0 Disbable, Each line displayed ROWRESET*2 Line period 09 RAMPCTL R/W 9-8 0 Internal Ramp DAC set All High 12 0 ROWRESET RAMPHIGH 3 0 Internal Ramp DAC set All High 09 RAMPCTL R/W RAMPHIGH 3 0 Internal Ramp DAC set All High 01 Reserved 4 0 Do Norsec 1 22 CLX, 01 = No Delay, 10 = +1/2 DCLK Ramp Dary							
Image: Constraint of the second sec				VSCAN	1	0	
03 LFTPOS RW 7-0 0 Column Display kight Position 04 RGTPOS RW 7-0 06 Column Display kight Position 05 TOPPOS RW 7-0 06 Row Display Top Position 06 BOTPOS RW 7-0 06 Row Duty Control 07 RoWRESET RW 7-0 0 Row Duty Control 08 ROWRESET RW 7-0 0 Row Duty Control 12 0 ROWRESET work on UNENABLED frame in 3D mode 0 0 12 0 ROWRESET work on UNENABLED frame in 3D mode 0 0 12 0 ROWRESET work on UNENABLED frame in 3D mode 0 0 12 0 ROWRESET work on UNENABLED frame in 3D mode 0 0 12 0 Rowreset work on UNENABLED frame in 3D mode 0 0 12 0 Ramp Dut Cast All High 0 0 0 0 0 14 RAMPDLY 1-0				HSCAN	0	0	Horizontal Scan Direction
04 RGTPOS R/W 7-0 06 Column Display Right Position 06 TOPPOS R/W 7-0 06 Row Display Top Position 07 ROWRESET R/W 7-0 06 Row Display Buttom Position 07 ROWRESET R/W 7-0 06 Row Duty Control 08 ROWRESET R/W 7-0 0 ROWRESET vork on UNENABLED frame in 3D mode 12 0 ROWRESET vork on UNENABLED frame in 3D mode Internal Ramp Buffer Monitor Enable 09 RAMPCTL R/W RAMPHIGH 3 0 Internal Ramp DAC set All High 0 0 Roman Fly back Time 0 Ramp Fly back Time 0 Ramp Ply back Time 0 RAMPDLY 1-0 1 Ramp Delay by DCLK 00 = -1/2 DCLK (01 = No Delay, 10 = +1/2 DCLK 00 RAMPBCM 7-4 4 (000 = -75% (DOI1 = -25%, 0110 = +50%, 0111 = +75%), 25% increase for each step 0B VDACMX R/W FLY_VREF 3 Extranal VREF Enable 0C				HOCAN	-		
05 TOPPOS R/W 7-0 06 Row Display Top Position 06 BOTPOS R/W 7-0 06 Row Display Bottom Position 07 0 Row Duty Control 9-8 00 Disable, Each line display BOWRESET'2 Line period 08 ROWRESET R/W 7-0 0 Row Duty Control 09 RAMPCTL R/W 7-0 0 Row Reserved 4 0 Do Not Change RAMPCTL R/W RAMPHICH 3 0 Internal Ramp DLG set All High 0 Internal Ramp DLG set All High 0 PLYBTIME 2 0 Ramp Fly back Time 0 0 Ramp Fly back Time 0 0 9-1/2 DCLK, 01 = No Delay, 10 = +1/2 DCLK 0 RAMPDLY 1-0 1 Ramp Delay by DCLX 000 = -75%, 0010 = -50%, 011 = -25%, 0100 = ±0%, 0111 = +75%, 010 = ±50%, 0111 = ±55%, 0100 = ±0%, 0111 = ±55%, 0100 = ±0%, 0111 = ±55%, 0100 = ±0%, 0111 = ±55%, 0100 = ±0%, 0101 = ±25%, 0100 = ±0%, 0101 = ±25%, 0100 = ±0%, 0101 = ±25%, 0100 = ±0%, 0101 = ±25%, 0100 = ±0%, 0101 = ±25%, 0100 = ±0%, 0101 = ±55%, 0100 = ±0%, 0101 = ±55%, 0100 = ±0%, 0101 = ±55%, 0100 = ±0%, 0101 = ±55%, 0100 = ±0%, 0101 = ±55%, 0100 = ±0%, 0101						-	
06 BOTPOS RW 7.0 06 Row Display Bottom Position 07 RowRESET R/W 7.0 0 Row Duty Control 0 RowDuty Control 08 ROWRESET R/W 9.0 0.Disable, Each line displayed ROWRESET*2 Line period 09 RAMPTICH RAMPMON 5 0 Internal Ramp Buffer Monitor Enable 09 RAMPTICH RAMPHICH 3 0 Internal Ramp DAC set All High 0 RAMPHICH 3 0 Internal Ramp DAC set All High 0 0 RAMPDLY 1-0 0 Ramp Delay by DCLK 00 = Normal operation, 1 = DAC set All High 0 RAMPDLY 1-0 1 Ramp Delay by DCLK 00 = +1/2 DCLK 01 = +1/2 DCLK 00 RAMPBCM 7-4 4 Ramp Daffer Current Control (0000 = +75%, 0010 = +50%, 0111 = +75%,), 25% increase for each step 0B VDACMX R/W 7-0 80 Ramp DAC Max Value Control, 40% - +40 % 0C BIASN R/W 7-0 80	-				-		
07 ROWRESET R/W 7-0 0 Row Duty Control 08 ROWRESET R/W 7-0 0 Row Duty Control 0.Disable, Each line displayed ROWRESET*2 Line period 09 RAMPCTL R/W RAMPHIGH 3 0 Internal Ramp DAC set All High 09 RAMPCTL R/W RAMPHIGH 3 0 Internal Ramp DAC set All High 0 RAMPCTL R/W RAMPHIGH 3 0 Internal Ramp DAC set All High 0 BAMPADLY 1-0 Do Not Change 0 Internal Ramp DAC set All High 0 FLYBTIME 2 0 Ramp Delay by DCLK 0 - 800 nSec. 0 RAMPDLY 1-0 1 Ramp Buffer Current Control 000 = -1/2 DCLK, 01 = No Delay, 10 = +1/2 DCLK 0 RAMPBCM 7-4 4 Ramp Buffer Current Control 000 = -75%, 0010 = -50%, 0011 = -25%, 0100 = +25%, 0110 = +50%, 0111 = +75%,), 25% increase for each step 0C BIASN R/W T-0 80 Ramp DAC Max Value Control, 40% ~ +40 % 0D <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	_						
08 ROWRESE I RW 9-8 0.01sable, Each Inc displayed ROWRESE I*2 Line period 09 RAMPCTL R RAMPMON 5 0 Internal Ramp Buffer Monitor Enable 09 RAMPCTL RW Reserved 4 0 Do Not Change 09 RAMPCTL RW RAMPHIGH 3 0 Internal Ramp DAC set All High 0 Now Reserved 4 0 Do Not Change Now Ramp Fly back Time 0 RAMPDLY 1-0 1 Ramp Delay by DCLK 0 800 n Sec 0 800 n Sec 1-500 n Sec 1-500 n Sec 1-500 n Sec 1-500 n Sec RAMPDLY 1-0 1 Ramp Delay by DCLK 00 = +1/2 DCLK, 01 = +1/2 DCLK 0100 = ±0%, 0101 = +25%, 0110 = +50%, 0111 = +75%,), 25% increase for each step Step Step Step 020 BIASN RW 7-0 80 Ramp DAC Max Value Control (0000 = -50%, 0011 = -25%, 0110 = +50%, 0111 = +75%,), 25% increase for each step 020 BIASN R/W EXT_VREF 3					-	0	
09 RAMPCTL RAMPMON 5 0 Internal Ramp Buffer Monitor Enable 09 RAMPCTL RAMPHIGH 3 0 Internal Ramp DAC Set All High 0 = Normal operation, 1 = DAC set All High 0 = Normal purple operation, 1 = DAC set All High 0 = Normal purple operation, 1 = DAC set All High 0 = Normal purple operation, 1 = DAC set All High 0 = Normal purple operation, 1 = DAC set All High 0 = Normal purple operation, 1 = DAC set All High 0 = Normal purple operation, 1 = DAC set All High 0 = Normal purple operation, 1 = DAC set All High 0 = Normal purple, 1 = Purp hold function enable 0 = Normal purple, 1 = Purp hold function enable 0 = Normal purple, 1 = Purp hold function enable 0 = Normal purple, 1 = Purp hold function enable 0 = Normal purple, 1 = Purp hold function enable 0 = Normal purple, 1 = Purp hold function enable 0 = Normal purple, 1 = Purp hold function enable 0 = Normal purple, 1	08	ROWRESET	R/W		-	_	
09 RAMPCTL R/W Reserved 4 0 Do Not Change 09 RAMPCTL R RAMPHIGH 3 0 Internal Ramp DAC set All High 0 = Normal operation, 1 = DAC set All High 0 = Normal operation, 1 = DAC set All High 0 = 800 nSec, 1 = 500 nSec RAMPDLY 1-0 1 Ramp Delay by DCLK 00 = -1/2 DCLK, 01 = No Delay, 10 = +1/2 DCLK RAMPBCM 7-4 4 Ramp Delay by DCLK 000 = -75% (Don't use), 0001 = -75%, 0101 = -50%, 0111 = -25%, 0100 = -75% (Don't use), 0001 = -75%, 0101 = +50%, 0111 = +75%,), 25% increase for each step 0B VDACMX RW 7-0 80 Ramp DAC Max Value Control (0000 = -75% (Don't use), 0001 = -75%, 0010 = -50%, 0011 = -25%, 0100 = ±0%, 0101 = +25%, 0110 = +50%, 0111 = +75%,), 25% increase for each step 0C BIASN RW 7-0 80 Ramp DAC Max Value Control, -40% ~ +40 % 0D GAMMASET R/W EXT_VREF 3 0 External VREF Enable 0D GAMMASET R/W PMPHOLD_EN 4 0 000 = bias current off 001 = Normal pumping, 1 = Pump hold function enable 0E VCOMMODE R/W VCOMAUTO 1-0 0 Current level for gamma sens				DAMENAON	_		
09 RAMPCTL RW RAMPHIGH 3 0 Internal Ramp DAC set All High 0 = Normal operation, 1 = DAC set All High 09 RAMPCTL R FLYBTIME 2 0 Ramp Fly back Time 0 = 800 nSec, 1 = 500 nSec RAMPDLY 1-0 1 Ramp Delay by DCLK 00 = -1/2 DCLK, 01 = No Delay, 10 = +1/2 DCLK Ramp Delay by DCLK 00 = -75% (Don't use), 0001 = -75%, 0010 = -50%, 0111 = +25%, 0110 = +50%, 0111 = +75%,), 25% increase for each step RAMPACM 7-4 4 Ramp Amp Current Control (0000 = -75% (Don't use), 0001 = -75%, 0010 = -50%, 0011 = -25%, 0100 = ±50%, 0111 = ±75%, 0100 = ±50%, 0111 = ±75%, 0100 = ±50%, 0111 = ±75%, 0100 = ±50%, 0111 = ±75%, 0100 = ±00%, 0111 = ±25%, 0100 = ±00%, 0111 = ±25%, 0100 = ±50%, 0111 = ±75%, 0100 = ±00%, 0111 = ±25%, 0100 = ±00%, 0111 = ±75%, 0100 = ±00%, 0111 = ±75%, 0100 = ±00%, 0111 = ±75%, 0100 = ±00%, 0111 = ±75%, 0100 = ±00%, 0111 = ±75%, 0110 = ±50%, 0111 = ±75%, 0100 = ±00%, 0111 = ±75%, 0110 = ±50%, 0111 = ±75%, 0110 = ±50%, 0111 = ±75%, 0110 = ±50%, 0111 = ±75%, 0110 = ±50%, 0111 = ±75%, 0110 = ±50%, 0111 = ±75%, 0110 = ±50%, 0111 = ±75%, 0100 = ±00%, 0111 = ±75%, 0110 = ±50%, 0111 = ±75%, 0110 = ±50%, 0111 = ±75%, 0110 = ±50%, 0111 = ±75%, 0110 = ±50%, 0111 = ±75%, 0110 = ±50%, 0111 = ±75%, 0110 = ±50%, 0111 = ±75%, 0110 = ±50%, 0111 = ±75%, 0110 = ±50%, 0111 = ±75%, 0110 = ±50%, 0111 = ±75%, 0110 = ±50%, 0111 = ±75%, 0110 = ±50%, 0111 = ±75\%, 0110 = ±75\%, 0100 = ±00%, 0111 = ±75\%, 0110 = ±50\%, 0111 = ±75\%, 0110 = ±75\%, 0110 = ±75\%, 0110 = ±75\%, 0110 = ±75\%, 0110 = ±75\%, 0110 = ±75\%, 0110 = ±75\%, 0110 = ±75\%, 0110 = ±75\%, 0110 = ±75\%, 0110 = ±					-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
09 RAMPCIL RVW FLYBTIME 2 0 Ramp Fly back Time 0 = 800 nSec. RAMPDLY 1-0 1 Ramp Delay by DCLK 00 = -1/2 DCLK, 01 = No Delay, 10 = +1/2 DCLK RAMPBCM 7-4 4 Ramp Bulfer Current Control (000 = -75%(Don't use), 0001 = -75%, 0010 = -50%, 0111 = -25%, 0100 = ±0%, 0101 = ±50%, 0111 = ±75%,), 25% increase for each step 0B VDACMX R/W 7-0 80 Ramp DAC Max Value Control (0000 = -75%(Don't use), 0001 = -75%, 0010 = -50%, 0011 = -25%, 0100 = ±0%, 0101 = ±50%, 0111 = ±75%,), 25% increase for each step 0B VDACMX R/W 7-0 80 Ramp DAC Max Value Control, 0100 = ±0%, 0101 = ±50%, 0111 = ±75%,), 25% increase for each step 0C BIASN R/W 7-0 80 Ramp DAC Max Value Control, 40% ~ ±40 % 0D -111 = bias BIASN 2-0 1 External VREF Enable 000 = bias current set to 0.5nA, 1nA, 1.5nA, 2nA, 2.5nA, 3.0 nA, 3.5 nA 0D GAMMASET R/W VGNSH_EN 3 0 VCOM PUMP hold enable when VGN sampling time 0 = Normal pumping, 1 = Pump hold function enable 0 NGN Sample & Hold Enable 0E VCOMMODE R/W VCOMALTO 1-0		DAMPOT	DAM	RAMPHIGH	3	0	
OB VDACMX RW Fragme 7-4 4 Ramp Delay by DCLK (0000 = -1/2 DCLK, 01 = No Delay, 10 = +1/2 DCLK 0B VDACMX RW 7-4 4 Ramp Buffer Current Control (0000 = -75% (Don't use), 0001 = -75%, 0010 = -50%, 0111 = -25%, 0100 = ±0%, 0101 = ±50%, 0110 = ±50%, 0111 = ±75%,), 25% increase for each step 0B VDACMX RW 7-0 80 Ramp Amp Current Control (0000 = -75% (Don't use), 0001 = -75%, 0010 = -50%, 0011 = -25%, 0100 = ±0%, 0101 = ±25%, 0110 = ±50%, 0111 = ±75%,), 25% increase for each step 0B VDACMX RW 7-0 80 Ramp DAC Max Value Control, 000 = ±0%, 0101 = ±25%, 0110 = ±50%, 0111 = ±75%,), 25% increase for each step 0C BIASN R/W EXT_VREF 3 0 External VREF Enable 0C BIASN R/W EXT_VREF 3 0 External VREF Enable 0D GAMMASET R/W PMPHOLD_EN 4 0 VCOM PUMP hold enable when VGN sampling time 0 = Normal pumping, 1 = Pump hold function enable 0E VCOMMODE R/W VGONSH_EN 3 0 Current level for gamma sensor 0E VCOMMODE R/W VCOM LS	09	RAMPCIL	K/W		2	0	Ramp Fly back Time
OB VDACMX R/W 7-0 1 00 = -1/2 DCLK, 01 = No Delay, 10 = +1/2 DCLK 00 = -1/2 DCLK, 01 = No Delay, 10 = +1/2 DCLK Ramp Buffer Current Control (0000 = -75%, 0010 = -50%, 0011 = -25%, 0100 = +50%, 0111 = +75%,), 25% increase for each step 00 = VDACMX R/W RAMPACM 3-0 4 Ramp Amp Current Control (0000 = -75% (Don't use), 0001 = -75%, 0010 = -50%, 0011 = -25%, 0110 = +50%, 0111 = +75%,), 25% increase for each step 00 B VDACMX R/W 7-0 80 Ramp DAC Max Value Control, -40% ~ +40% 00 = BIASN R/W FXT_VREF 3 0 External VREF Enable 00 = MAMASET R/W PMPHOLD_EN 4 000 = bias current off 001 = hias current set to 0.5nA, 1nA, 1.5nA, 2nA, 2.5nA, 3.0 nA, 3.5 nA 00 = VCOMMODE R/W VGNSH_EN 3 0 VGN Sample & Hold Enable 0 = VCOMMODE R/W VCOMAUTO 1-0 0 Current level for gamma sensor					Ĺ		
Birstein RAMPBCM 7-4 4 Ramp Buffer Current Control 00 RAMPACM 7-4 4 Ramp Amp Current Control (0000 = -75% (Don't use), 0001 = -75%, 0010 = -50%, 0011 = -25%, 0100 = ±0%, 0100 = ±0%, 0101 = ±25%, 0110 = ±50%, 0111 = ±75%,), 25% increase for each step 00 VDACMX R/W 7-0 80 Ramp Amp Current Control (0000 = -75% (Don't use), 0001 = -75%, 0010 = -50%, 0011 = -25%, 0100 = ±0%, 0101 = ±25%, 0110 = ±00%, 0101 = ±25%, 0110 = ±00%, 0101 = ±25%, 0100 = ±0%, 0101 = ±25%, 0100 = ±0%, 0101 = ±25%, 0110 = ±50%, 0111 = ±75%,), 25% increase for each step 0C BIASN R/W 7-0 80 Ramp DAC Max Value Control, -40% ~ ±40 % 0D BIASN R/W EXT_VREF 3 0 External VREF Enable 0D BIASN R/W BIASN 2-0 1 000 = bias current off 001~111 = bias current set to 0.5nA, 1nA, 1.5nA, 2nA, 2.5nA, 3.0 nA, 3.5 nA VCOMPUMP hold enable when VGN sampling time 0D GAMMASET R/W PMPHOLD_EN 4 0 VCOM PUMP hold enable when VGN sampling time 0 VCOMMODE R/W VCOMSEN 3 0 VGN Sample & Hold Enable				RAMPDLY	1-0	1	
Biasn Rampace 7-4 4 (0000 = -75% (Don't use), 0001 = -75%, 0010 = -50%, 0 011 = -25%, 0100 = ±0%, 0100 = ±0%, 0101 = ±25%, 0110 = ±50%, 0111 = ±75%,), 25% increase for each step 0B VDACMX R/W 7-0 80 Ramp Amp Current Control (0000 = -75% (Don't use), 0001 = -75%, 0010 = -50%, 0011 = -25%, 0110 = ±50%, 0111 = ±75%,), 25% increase for each step 0B VDACMX R/W 7-0 80 Ramp Amp Current Control (0000 = ±0%, 0101 = ±50%, 0111 = ±75%,), 25% increase for each step 0C BIASN R/W EXT_VREF 3 0 External VREF Enable 0D0 GAMMASET R/W EXT_VREF 3 0 External VREF Enable 0D0 GAMMASET R/W PMPHOLD_EN 4 0 VCOM PUMP hold enable when VGN sampling time 0 = Normal pumping, 1 = Pump hold function enable 0E VCOMMODE R/W ISEN_EN 3 0 VGM Sample & Hold Enable 0 = VGN SH output 0E VCOMMODE R/W ISEN_EN 3-2 1 VCOM ISEN Enable 0 = VGN SH Bypass, 1 = Enable VGN SH output 0E VCOMMODE R/W VCOMAUTO 1-0 0							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				RAMPBCM	7-4	4	(0000 = -75%(Don't use), 0001 = -75%, 0010 = -50%,0 011 = -25%,
OB VDACMX R/W 7-0 80 Ramp Amp Current Control (0000 = -75%(Don't use), 0001 = -75%, 0010 = -50%, 0011 = -25%, 0100 = ±0%, 0101 = +25%, 0110 = +50%, 0111 = +75%,), 25% increase for each step 0B VDACMX R/W 7-0 80 Ramp DAC Max Value Control, -40% ~ +40 % 0C BIASN R/W EXT_VREF 3 0 External VREF Enable 0C BIASN R/W BIASN 2-0 1 000 = bias current off 001-111 = bias current set to 0.5nA, 1nA, 1.5nA, 2nA, 2.5nA, 3.0 nA, 3.5 nA 0D GAMMASET R/W PMPHOLD_EN 4 0 VCOM PUMP hold enable when VGN sampling time 0 = Normal pumping, 1 = Pump hold function enable 0D GAMMASET R/W VGNSH_EN 3 0 VGN Sample & Hold Enable 0 = VGN Sample & Hold Enable 0E VCOMMODE R/W ISEN_EN 3-2 1 VCOM I-Sensor Enable 0E VCOMMODE R/W VCOMAUTO 1-0 0 01 = AUTO1 mode							
Matrix RAMPACM 3-0 4 (0000 = -75% (Don't use), 0001 = -75%, 0010 = -50%, 0011 = -25%, 0100 = ±0%, 0100 = ±0%, 0100 = ±0%, 0101 = ±25%, 0110 = ±50%, 0111 = ±75%,), 25% increase for each step 0B VDACMX R/W 7-0 80 Ramp DAC Max Value Control, -40% ~ ±40 % 0C BIASN R/W EXT_VREF 3 0 External VREF Enable 0C BIASN R/W EXT_VREF 3 0 External VREF Enable 0D BIASN R/W PMPHOLD_EN 4 0 000 = bias current off 001-111 = bias current set to 0.5nA, 1nA, 1.5nA, 2nA, 2.5nA, 3.0 nA, 3.5 nA 0D GAMMASET R/W PMPHOLD_EN 4 0 VCOM PUMP hold enable when VGN sampling time 0 = Normal pumping, 1 = Pump hold function enable 0D IDSTEP 2-0 0 Current level for gamma sensor 0E VCOMMODE R/W ISEN_EN 3-2 1 VCOM I-Sensor Enable 0 AUTO1 mode 01 = AUTO2 mode 01 = AUTO2 mode 01 = AUTO2 mode 01 = AUTO2 mode							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
OB VDACMX R/W 7-0 80 Ramp DAC Max Value Control, -40% ~ +40 % 0C BIASN R/W EXT_VREF 3 0 External VREF Enable 0C BIASN R/W BIASN 2-0 1 000 = bias current off 001 = bias current set to 0.5nA, 1nA, 1.5nA, 2nA, 2.5nA, 3.0 nA, 3.5 nA 0D GAMMASET R/W PMPHOLD_EN 4 0 VCOM PUMP hold enable when VGN sampling time 0 = Normal pumping, 1 = Pump hold function enable 0D GAMMASET R/W VGNSH_EN 3 0 VGN Sample & Hold Enable 0 = VGN SH Bypass, 1 = Enable VGN SH output 0E VCOMMODE R/W ISEN_EN 3-2 1 VCOM I-Sensor Enable 0B VCOMMODE R/W VCOMAUTO 1-0 0 01 = AUTO1 mode				KAMPACM	3-0	4	
OC BIASN R/W EXT_VREF 3 0 External VREF Enable 00 BIASN R/W BIASN 2-0 1 000 = bias current off 001 = 111 = bias current set to 0.5nA, 1nA, 1.5nA, 2nA, 2.5nA, 3.0 nA, 3.5 nA 0D GAMMASET R/W PMPHOLD_EN 4 0 VCOM PUMP hold enable when VGN sampling time 0 = Normal pumping, 1 = Pump hold function enable 0D VGNSH_EN 3 0 VGN Sample & Hold Enable 0 = VGN SH Bypass, 1 = Enable VGN SH output 0E VCOMMODE R/W IDSTEP 2-0 0 Current level for gamma sensor 0E VCOMMODE R/W VCOMAUTO 1-0 0 00 = AUTO1 mode							
OC BIASN R/W BIASN 2-0 1 000 = bias current off 001-111 = bias current set to 0.5nA, 1nA, 1.5nA, 2nA, 2.5nA, 3.0 nA, 3.5 nA 0D GAMMASET R/W PMPHOLD_EN 4 0 VCOM PUMP hold enable when VGN sampling time 0 = Normal pumping, 1 = Pump hold function enable 0D GAMMASET R/W VGNSH_EN 3 0 VGN Sample & Hold Enable 0 = VGN Sample & Hold Enable 0E VCOMMODE R/W ISEN_EN 3-2 1 VCOM Isensor Enable 0E VCOMMODE R/W VCOMAUTO 1-0 0 01 = AUTO1 mode	0B	VDACMX	R/W				
0D GAMMASET R/W PMPHOLD_EN 4 0 001-111 = bias current set to 0.5nA, 1nA, 1.5nA, 2nA, 2.5nA, 3.0 nA, 3.5 nA 0D GAMMASET R/W PMPHOLD_EN 4 0 VCOM PUMP hold enable when VGN sampling time 0 = Normal pumping, 1 = Pump hold function enable 0D VGNSH_EN 3 0 VGN Sample & Hold Enable 0 = VGN SA Bypass, 1 = Enable VGN SH output 0E VCOMMODE R/W ISEN_EN 3-2 1 VCOM Isensor Enable 00 = AUTO1 mode 0E VCOMMODE R/W VCOMAUTO 1-0 0 01 = AUTO2 mode	00	BIASN	R/\//				
OD GAMMASET R/W PMPHOLD_EN 4 0 0 = Normal pumping, 1 = Pump hold function enable 0D GAMMASET R/W VGNSH_EN 3 0 VGN Sample & Hold Enable 0 = VGN SH Bypass, 1 = Enable VGN SH output 0E VCOMMODE R/W ISEN_EN 3-2 1 VCOM I-Sensor Enable 00 = AUTO1 mode 00 = AUTO1 mode 01 = AUTO2 mode 01 = AUTO2 mode		DIAON	10.00	BIASN	2-0	1	001~111 = bias current set to 0.5nA, 1nA, 1.5nA, 2nA, 2.5nA, 3.0 nA, 3.5 nA
OD GAMMASET R/W VGNSH_EN 3 0 VGN Sample & Hold Enable 0 = VGN SH Bypass, 1 = Enable VGN SH output 0E VCOMMODE R/W ISEN_EN 3-2 1 VCOM I-Sensor Enable 00 = AUTO1 mode 0E VCOMMODE R/W VCOMAUTO 1-0 0 01 = AUTO2 mode				PMPHOLD_EN	4	0	
IDSTEP 2-0 0 Current level for gamma sensor 0E VCOMMODE R/W 3-2 1 VCOM I-Sensor Enable 00 = AUTO1 mode 00 = AUTO1 mode 01 = AUTO2 mode	0D	GAMMASET	R/W	VGNSH_EN	3	0	VGN Sample & Hold Enable
0E VCOMMODE R/W ISEN_EN 3-2 1 VCOM I-Sensor Enable 00 = AUTO1 mode 00 = AUTO1 mode 00 = AUTO2 mode 01 = AUTO2 mode				IDSTEP	2-0	0	
0E VCOMMODE R/W VCOMAUTO 1-0 0 01 = AUTO1 mode 01 = AUTO2 mode							*
VCOMAUTO 1-0 0 01 = AUTO2 mode			R/M				00 = AUTO1 mode
10 = MANUAL mode	VE	VCOIVIIVIODE	FV/ VV	VCOMAUTO	1-0	0	
		l		l			10 = MANUAL mode

eMagin Corporation D11-501613-00 Rev D

			1		1	
			SS_BYPASS	7	0	VCOM Soft Start Bypass mode
						0 = Soft Start function enable, 1 = Soft Start Bypass
			VCKDUTY	6-4	3	VCOM Clock Duty Control (High:Low)
0F	VCOMCTL	R/W				0=1:7, 1=1:3, 2=3:5, 3=1:1, 4=5:3, 5=3:1, 6=7:1, 7=Don't use VCOM Clock Select
			VCKSEL	3-2	3	
						0=125KHz, 1=250KHz, 2=500KHz, 3=800KHz VCOM Soft Start Delay Time Mode
			VCOMSS	1-0	1	0 = 2mS, 1 = 4mS, 2 = 8mS, 3 = 16mS
10	VGMAX	R/W		7-0	0D	Fine adjustment for VGMAX level (default = 4.95V)
11	VCOM	R/W		7-0	51	VCOM manual setting (used when VCOMMODE = 01 or 10, default = -2.3V)
			IDRF_COARSE	7-5	0	Coarse adjustment for array reference current
12	IDRF	R/W	IDRF_FINE	4-0	0	Fine adjustment for array reference current
13	DIMCTL	R/W		6-0	01	Dimming level control (default = 1X IDRF)
14	TREFDIV	R/W		5-0	17	Temp. Sensor Reference Clock Divider
15	TEMPOFF	R/W		7-0	ЗA	Temp. Sensor Offset
						Number of frames per TEMPOUT update (Data range 02H ~ FFH)
16	TUPDATE	R/W		7-0	FF	Update Time = (TUPDATE+1) * PERIOD _{FRAME}
						PERIOD _{FRAME} = 16.6 mSec when using 60Hz Video
17	TEMPOUT	RO		7-0	-	Temperature Sensor Readout
			ISENPD	7	0	ISEN Power Down
			IDMAXPD	6	0	IDMAX Power Down
			VCOMPD	5	0	VCOM Power Down
18	ANGPWRDN	R/W	VREFPD	4	0	VREF Power Down
10		1.7.44	GMSENPD	3	0	Gamma Sensor Power Down
			VCSENPD	2	0	VCOM Sensor Power Down
			TSENPD	1	0	Temperature Sensor Power Down
			TREFPD	0	0	Temperature Reference Power Down
			PDWN	7	0	All System Power Down (Override all analog power down, except LDOPD, POR50VPD
					0	POR18VPD) LVDS receiver Power Down
			LVDSPD LDOPD	6 5	0	
19	SYSPWRDN	R/W	RBUFPD	5 4	0	1.8V LDO Power Down RAMP Buffer Power Down
19	STOFWEDIN	FX/ V V	RAMPPD	3	0	RAMP DAC AMP Power Down
			DACPD	2	0	RAMP DAC Power Down
			POR50VPD	1	0	5V POR Power Down
			POR18VPD	0	0	1.8V POR Power Down
						Enable external clock for Burn-in test mode (0=use internal ring OSC, 1=use external
			TPVCLK	4	0	LVDS clock)
			PATTEN	3	0	Test Pattern Display Enable when "1"
1A	TPMODE	R/W				Select test pattern for Built-In-Test-Mode (BURNIN pin = 'High' or PATTEN = 1)
			PATTSEL	2-0	0	000= Burn-in (all white), 001=Color Bar, 010=16 level gray scale
				- °	Ũ	011=Checker Board, 100=Vertical Line, 101= Horizontal Line, 110=Grid Pattern,
						111=Color Screen
1B	TPLINWTH	R/W		7-0	0	Line Test Pattern Line Width (0=1pixel, 1=2pixel,, 255=256pixel)
1C 1D	TPCOLSP	R/W		7-0	0	Line Test Pattern Column Space (0=1pixel, 1=2pixel,, 255=256pixel)
ID	TPROWSP	R/W		7-0	0	Line Test Pattern Row Spce (0=1pixel, 1=2pixel,, 255=256pixel) When PATTSEL=1,2 :Bit7-Bit0 :Don't care
						When PATTSEL=1,2. Bit/-Bit/-Bit/-Bit/ Line Test Pattern Background Color (RGB)
1E	TPCOLOR	R/W		7-0	0	Bit2-Bit0 :Line Test Pattern Background Color (RGB)
						When PATTSEL=7, All 8 bits used 256 gray level
						Select LVDS Skew Align reference Clock delay
45	DIVOEI	D 44/	SKWDLY	7-4	0	0 = no delay, 1 = one unit delay,, 15 = 15 unit delay
1F	DLYSEL	R/W	CLKDLY	3-0	1	Select clock delay for serial data latch
			CLKDLY	3-0		0 = no delay, 1 = one unit delay, …, 15 = 15 unit delay
			ALNMOD	2	0	LVDS Align mode
				_	U	0 = normal Operation, 1 = auto align mode
20	LVDSCTL	R/W		.		LVDS Skew mode
			SKEWMOD	1-0	0	0 = normal Operation, 1 = auto skew,
				L_		2 = manual skew one set for all (use SKEW0), 3 = manual skew separate setting
21	SKEW0	R/W		7-0	0	LVDS data line #0 skew setting (when SKEWMOD=2, SKEW0 override others)
22	-			15-8	-	0000h = no delay, 0001 = 1 unit delay, FFFFh = 15 unit delay
23	SKEW1	R/W		7-0	0	LVDS data line #1 skew setting 0000h = no delay, 0001 = 1 unit delay, FFFFh = 15 unit delay
24				15-8		LVDS data line #2 skew setting
25	SKEW2	R/W		7-0	0	0000h = no delay, 0001 = 1 unit delay, FFFFh = 15 unit delay
26				15-8		LVDS data line #3 skew setting
27 28	SKEW3	R/W		7-0 15-8	0	0000h = no delay, 0001 = 1 unit delay, FFFFh = 15 unit delay
						MSB of SKEW3~SKEW0 read out
29	SKFAST	R	SKFAST	3-0	-	All "0" = OK, Not all "0" = Error (need increase SKWDLY)
<i></i>		_				LSB of SKEW3~SKEW0 read out
	SKSLOW	R	SKSLOW	3-0	-	All "1" = OK, Not all "1" = Error (need decrease SKWDLY)
2A				-		
2A			DECEN	<u> </u>		define ENABLE/VS pin function
	OVNOVOD	D ^ 4	DEFEN	2-1	1	00=not used (all embeded), 01=used as ENABLE, 10=used as VSYNC
2A 2B	SYNCMOD	R/W	DEFEN DEFHS	2-1 0	1 0	

eMagin Corporation D11-501613-00 Rev D

	1					
2C	LUT_ADDR	R/W		7-0	0	Gamma Look-Up Table template access Address
2D	LUT DATA	R/W	LUT_DATAL	7-0	0	Gamma Look-Up Table template R/W Data LSB (Auto LUT_ADDR increase)
2E	LUI_DAIA	10/00	LUT_DATAH	9-8	0	Gamma Look-Up Table template R/W Data MSB
2F	LUT UPDATE	R/W	UDGAMMA	3	0	Update LUT template ro R,G,B Gamma LUT enable (Auto cleared after update)
21	LOT_OF DATE	10/00	UDRGB	2-0	7	Select R,G,B Gamma LUT to update (ex. 100=R Gamma Update)
30	Reserved	R		7-0	_	Test Purpose
31	Reserved	ĸ		10-8	-	Test Pulpose
32	Reserved	R		7-0	_	Test Purpose
33	Reserved	ĸ		10-8	-	rest Pulpose
34	Reserved	R/W		7-0	99	Do Not Change
35	Reserved	R/W		7-0	99	Do Not Change
36	Reserved	R/W		3-0	0	Do Not Change
37	Reserved	R/W		6-0	0	Do Not Change
38	Reserved	R/W		7-0	0	Do Not Change
39	Reserved	R/W		7-0	0	Do Not Change
3A	Reserved	R/W		7-0	FF	Do Not Change
3B	Reserved	R/W		7-0	0	Do Not Change
3C	Reserved	R/W		4-0	0	Do Not Change
3D	Reserved	R/W		2-0	3	Do Not Change
40	Reserved	R/W		6-0	0	Do Not Change
41	Reserved	R/W		7-0	30	Do Not Change
42	Reserved	R/W		6-0	64	Do Not Change

12. DETAILED REGISTER DESCRIPTIONS

12.1 STAT (00h)

Name	STAT
Address	00h
Mode	Read Only

Bit Name	Bit#	Reset Value	Description
REV	2-0	0	Silicon revision number; Rev. $1 = 0$

Bits REV in this register indicate the revision number of the silicon backplane design, with 0 corresponding to the first silicon known as Rev. 1.

12.2 VINMODE (01h)

Name	VINMODE
Address	01h
Mode	Read / Write

Bit Name	Bit#	Reset Value	Description
WRDISABLE	7	0	I ² C register write disable
Reserved	6	0	Do Not Change
DVGA	5	0	VGA Video Input Mode Enable
SET_ENABLE	4	0	ENABLE active level
SET_FIELD	3	0	Field polarity
AUTOSYNC	2	1	Automatic VSYNC/HSYNC Polarity Detection Enable
VSYNCPOL	1	1	VSYNC polarity
HYSYNCPOL	0	1	HSYNC polarity

WRDISABLE:

1 = write protected (all other registers become read only)

0 = write enable (all registers can be updated externally via I²C) (default)

DVGA:

0 = SXGA video mode (default)

1 = Double VGA video mode

When the video source is the VGA resolution, the SXGA-096 makes the pixel data double internally and display it in 1280 x 960 pixel area with this register enable.

SET_ENABLE:

0 = the active state of the ENABLE input is set "low" (default)

1 = the active state of the ENABLE input is set "high"

The ENABLE input pin is used to implement 3D video modes using a single RGB source, with two consecutive frames carrying information for each eye. The microdisplay can be programmed for either an active high or low ENABLE input using the SET_ENABLE bit, allowing a single video signal to be used with two displays. In such a configuration, one display scans and displays, while the other one holds and displays. The active state of the ENABLE input corresponds to the video data being scanned and displayed by the microdisplay.

To implement the Frame Sequential 3D Mode according to the VESA Standard for Stereoscopic Display Hardware, the display for the left eye is programmed with SET_ENABLE=1 and the right eye display is programmed with SET_ENABLE=0. Consequently, the data for the left eye is supplied and displayed when ENABLE=1 while the display for the right eye displays the previous frame of data.

The ENABLE input pin is also used to indicate field polarity in non-3D interlaced modes. In this mode the SET_FIELD bit determines the field polarity when ENABLE is active.

SET_FIELD:

0 = Odd Field when ENABLE=Active (default)

1 = Even Field when ENABLE=Active

The SET_FIELD register determines the field polarity of the video signal when the ENABLE pin is active.

AUTOSYNC:

0 = Auto Sync detection mode OFF

1 = Auto Sync detection mode ON (default)

VSYNCPOL and HSYNCPOL are overridden by detected sync polarity when AUTOSUNC = 1.

VSYNCPOL:

0 = Negative Sync 1 = Positive Sync (default)

HSYNCPOL:

0 = Negative Sync 1 = Positive Sync (default)

The SYNCPOL registers are used to determine whether the positive or negative edge of the external synchronization clocks (HSYNC and VSYNC) is used as the active transition by the internal display sequencers and control logic.

12.3 DISPMODE (02h)

Name DISPMODE

Address	02h
Mode	Read / Write

Bit Name	Bit#	Reset Value	Description	
DISPOFF	7	1	Display On/Off control	
MONO	6	0	Mono display mode selection	
GAMMA_EN	5	1	Internal Gama LUT enable	
3D-MODE	4	0	3D Mode control	
SCMODE	3-2	0	Progressive or Interlaced scan mode selection	
VSCAN	1	0	Vertical Scan direction	
HSCAN	0	0	Horizontal Scan direction	

DISPOFF:

0 =Display is turned ON

1 = Display is turned OFF (default)

The display starts in the OFF state by default and requires a command via the serial port to be turned on.

MONO:

0 =Color display mode (default)

1 = Mono display mode

The MONO is used to set monochrome display mode. When MONO = 1, the SXGA-096 only accept the input data from LVDS channel 1 and 2. Other channels (channel 0, 3) are goes to power down mode.

GAMMA_EN:

0 = Bypass Internal Gamma LUT

1 = Use internal Gamma LUT (default)

3D-MODE:

0 = Normal display mode (default)

1 =Time Sequential 3D mode

These bits are used to set the 3D mode of operation in conjunction with SET_ENABLE (bit #3 of the VINMODE register) and the Enable input. In Frame Sequential Mode each video frame contains information for either the left or right eye. When 3D-MODE="1" the SCMODE bit in the DISPMODE register is overridden to Progressive Scan Mode (0h). The following description for Frame Sequential operation assumes the source is in compliance with the VESA standard, where the data for the left eye is provided while the Enable signal is at the logic high level, and the data for the right eye display is provided while the Enable signal is at the logic low level. The Enable input signal is sampled into the circuit by a flip-flop clocked on the falling edge of VSYNC and the sampled value is used for the next frame. (The Enable signal is generated by the graphics software and may not be synchronized to the VSYNC signal).

To activate the stereovision mode, the right eye display needs to be configured with Enable active low (SET_ENABLE= "0", bit #3 of the VINMODE register). This will allow the right eye microdisplay to hold the previous frame while the Enable input is high. The left eye display needs to be configured with Enable active high (SET_ENABLE="1", bit #3 of the VINMODE register). Thus the two Enable inputs can be tied together to the incoming Stereo Sync signal provided by the graphics adapter (or other custom source).

SCMODE:

- 00 = Progressive scan mode (default)
- 01 = Interlaced scan mode
- 1X = Pseudo-interlaced mode

Interlaced modes are limited to a maximum of 518 and a minimum of 263 active rows per field.

VSCAN:

- 0 = Top to Bottom vertical scan direction (default)
- 1 = Bottom to Top vertical scan direction

HSCAN:

- 0 = Left to Right horizontal scan direction (default)
- 1 = Right to Left horizontal scan direction

12.4 LFTPOS (03h)

Name	LFTPOS	
Address	03h	
Mode	Read / Write	

Bit Name	Bit#	Reset Value	Description
	7-0	06	Left position of first active column

This register, along with register RGTPOS, is used to set the horizontal position of the active display window within the 1292 available columns of pixels. In SXGA mode the active window can be moved by +/-6 pixels from the center (default) position. When LFTPOS is increased, register RGTPOS must be decreased by the same value so that the sum of the two remains equal.

12.5 RGTPOS (04h)

Name	RGTPOS	
Address	04h	
Mode	Read / Write	

Bit Name	Bit#	Reset Value	Description
	7-0	06	Right position of last active column

This register, along with register LFTPOS, is used to set the horizontal position of the active display window within the 1292 available columns of pixels. In SXGA mode the active window can be moved by +/-6 pixels from the center (default) position. When RGTPOS is increased, register LFTPOS must be decreased by the same value so that the sum of the two remains equal.

12.6 TOPPOS (05h)

Name	TOPPOS
Address	05h
Mode	Read / Write

Bit Name	Bit#	Reset Value	Description
	7-0	06	Top position of first active row

This register, along with register BOTPOS, is used to set the vertical position of the active display window within the 1036 available rows of pixels. In SXGA mode the active window can be moved by +/-6 pixels from the center (default) position. When TOPPOS is increased, register BOTPOS must be decreased by the same value so that the sum of the two remains equal.

12.7 BOTPOS (06h)

Name	BOTPOS
Address	06h
Mode	Read / Write

Bit Name	Bit#	Reset Value	Description
	7-0	06	Bottom position of last active row

This register, along with register TOPPOS, is used to set the vertical position of the active display window within the 1036 available rows of pixels. In SXGA mode the active window can be moved by +/-6 pixels from the center (default) position. When BOTPOS is increased, register TOPPOS must be decreased by the same value so that the sum of the two remains equal.

12.8 ROWRESET (07h, 08h)

Name	ROWRESET	
Address	07h, 08h	
Mode	Read / Write	

Bit Name	Bit#	Reset Value	Description
ROWRESETL (07h)	7-0	0	Row duty rate control (LSB)
ROWRESETH	1-0	0	Row duty rate control (MSB)
(08h)	4	0	ROWRESET work on UNENABLED frame in 3D mode

ROWRESETH:BIT4

- 0 = Active duty rate can be set $0 \sim 50\%$, 100% when 3D mode
- 1 = Active duty rate can be set 50 ~ 100% when 3D mode

This register is used to set the number of line cycles (in steps of 2) during which each row is active in any frame period. Each row is driven to black during the non-active line cycles.

ROWRESET (dec)	Active Line Cycles	Active Duty Rate (%)	Note
0	all	100	Pixels active for entire frame period
1	2	2*Thsync/Tframe	1054 total HS cycles / frame (SXGA/60Hz)
n	2*n	2*n*Thsync/Tframe	
>527	all	100	Pixels active for entire frame period

12.9 RAMPCTL (09h)

Name	RAMPCTL
Address	09h
Mode	Read / Write

Bit Name	Bit#	Reset	Description
		Value	
RAMPMON	5	0	Internal RAMP Amp monitor enable
	4	0	Reserved (Do Not Change)
RAMPHIGH	3	0	Set internal RAMP DAC high
FLYBTIME	2	0	RAMP Flyback time
RAMPDLY	1-0	1	RAMP delay in DCLK cycles

RAMPMON:

- 0 = Disable internal RAMP Buffer monitoring (default)
- 1 = Enable internal RAMP Buffer monitoring

The RAMPMON register is used to enable monitoring of the internal RAMP buffer output signal.

RAMPHIGH:

0 = Normal operation (default)

1 = DAC set to all high output

The RAMPHIGH register is used to set internal RAMPDAC to all high output mode for test purposes.

FLYBTIME:

0 = 500 ns (default)1 = 800 ns

The FLYBTIME register is used to set the fly-back (return to 0) time for the internal RAMP.

RAMPDLY:

 $00 = -\frac{1}{2} DLCK$ 01 = no delay (default) 10 = + $\frac{1}{2} DCLK$

The RAMPDLY2 register is used to adjust the starting position of the internal RAMP.

12.10 RAMPCM (0Ah)

Name	RAMPCM
Address	0Ah
Mode	Read / Write

Bit Name	Bit#	Reset Value	Description
RAMPBCM	7-4	4	RAMP Buffer current control
RAMPACM	3-0	4	RAMP Amp current control

RAMPBCM:

0000 = -100% (power down) 0001 = -75% 0010 = -50% 0011 = -25% 0100 = nominal (default) 0101 = +25% 0110 = +50% 0111 = +75%...

The RAMPBCM register is used to set the operating bias current for the internal RAMP buffer. The settings reduce or increase the current by 25 % of the nominal (default) value.

RAMPACM:

0000 = -100% (power down)

 $\begin{array}{l} 0001 = -75\% \\ 0010 = -50\% \\ 0011 = -25\% \\ 0100 = nominal (default) \\ 0101 = +25\% \\ 0110 = +50\% \\ 0111 = +75\% \\ \dots \end{array}$

The RAMPACM register is used to set the operating bias current for the internal RAMP amplifier. The settings reduce or increase the current by 25% percentage of the nominal (default) value.

12.11 VDACMX (0Bh)

Name	VDACMX
Address	0Bh
Mode	Read / Write

Bit Name	Bit#	Reset Value	Description
	7-0	80	RAMP DAC maximum value control

Register VDACMX is used to adjust the maximum value of the internal RAMP DAC signal by -40% to +40% of the nominal value.

NOTE: The normal operating value for VDACMX should be set to 80h.

The typical dependence of display luminance on VDACMX(dec) is shown in Figure 22. The luminance is seen to saturate for VDACMX greater than about 7Ah in this sample. For normal operation VDACMX should be set to about 90 to 95% of the saturation value as shown in the figure.

Figure 32: Luminance dependency on VDACMX

12.12 BIASN (0Ch)

Name	BIASN
Address	0Ch
Mode	Read / Write

Bit Name	Bit#	Reset Value	Description
EXT_VREF	3	0	Enable external VREF
BIASN	2-0	1	Set pixel bias current

EXT_VREF:

1 = enable the external VREF source

0 = use the internal VREF source (default)

Note: This option not available on the current package – use the default setting only.

BIASN:

000 = pixel bias current is turned off

111 = pixel bias current set to maximum

The BIASN register is used to set the sink current applied in each pixel cell. It is recommended to use the BIASN=03 setting in normal operation.

12.13 GAMMASET (0Dh)

Name	GAMMASET
Address	0Dh
Mode	Read / Write

Bit Name	Bit#	Reset	Description
		Value	
PMPHOLD_EN	4	0	VCOM pump hold enable
VGNSH_EN	3	0	VGN sample & hold enable
IDSTEP	2-0	0	Current level for gamma sensor

PMPHOLD_EN:

0 = Normal operation, pump hold disabled (default)

1 = Enable pump hold during VGN sampling time

The PMPHOLD_EN register is used to disable the VCOM converter switch during the VGN sampling time to reduce noise pickup.

VGNSH_EN:

0 = Bypass the VGN sample & hold function (default)

1 = Enable the VGN sample & hold function

The VGNSH_EN register is used to activate the internal sample & hold function provided at the VGN output pin.

IDSTEP:

 $0h \approx IDRF/128$ $1h \approx IDRF/64$ $2h \approx IDRF/32$ $3h \approx IDRF/16$ $4h \approx IDRF/8$ $5h \approx IDRF/4$ $6h \approx IDRF/2$ 7h = IDRF

The IDSTEP register is used to set the current level for the gamma sensor. The corresponding output voltage is provided at pin VGN.

A minimum of 10msec following an IDSTEP register update should be allowed for the VGN signal to settle before sampling. In addition, sampling of the VGN signal should be carried out during the Frame Blanking time.

12.14 VCOMMODE (0Eh)

Name	VCOMMODE
Address	0Eh
Mode	Read / Write

Bit Name	Bit#	Reset Value	Description
ISEN_EN	3-2	1	Enable the VCOM current sensor
VCOMAUTO	1-0	0	Set internal VCOM supply mode

ISEN_EN:

00 = Turn off VCOM current sensor

01/11 = Turn on VCOM current sense function

When the ISEN_EN is turned on, the internal VCOM current sense function is enabled. If it detects overcurrent in VCOM, the internal VCOM dc-dc converter stops the pumping signal(DRV) to protect external components.

VCOMAUTO:

This register sets the operating mode of the internal VCOM dc-dc converter.

 $00 = AUTO1 \mod (default)$

- 01 = AUTO2 mode
- 10 = MANUAL mode

In the AUTO1 mode, the VCOM converter uses an internal current reference to maintain a fixed OLED current level, which is defined by registers DIMCTL and IDRF.

In the AUTO2 mode, the VCOM converter regulates the OLED current level when the VCOM supply is below a set threshold (defined by the VCOM register), and clamps the output to the threshold level when conditions call for a VCOM output above the threshold level.

In the Manual mode, the VCOM converter uses a voltage reference signal to maintain a fixed cathode supply voltage. The value of the cathode voltage is set by register VCOM.

12.15 VCOMCTL (0Fh)

Name	VCOMCTL
Address	0Fh
Mode	Read / Write

Bit Name	Bit#	Reset Value	Description
SS_BYPASS	7	0	Bypass the VCOM soft start mode
VCKDUTY	6-4	3	VCOM clock duty control
VCKSEL	3-2	3	VCOM clock select
VCOMSS	1-0	1	VCOM soft start delay time

SS_BYPASS:

0 = Normal operation, soft-start function enabled (default)

1 = Disable the VCOM soft-start function

VCKDUTY:

0h = 1:7 1h = 1:3 2h = 3:5 3h = 1:1 (default) 4h = 5:3 5h = 3:1 6h = 7:17h = don't use

Register VCKDUTY sets the VCOM clock duty ratio (high-low).

VCKSEL:

0h = 125 kHz1h = 250 kHz2h = 500 kHz 3h = 800 kHz (default)

Register VCKSEL sets the operating frequency of the VCOM clock.

VCOMSS:

0h = 2 ms 1h = 4 ms (default) 2h = 8 ms3h = 16 ms

Register VCMOSS sets the soft-start duration during startup of the VCOM converter.

12.16 VGMAX (10h)

Name	VGMAX
Address	10h
Mode	Read / Write

Bit Name	Bit#	Reset Value	Description
	7-0	0D	Fine adjustment for VGMAX level

00h = 5 (VDD5 = 5V)0Dh = 4.95 (default)FFh = 4

VGMAX level = VDD5*(1 - 0.2*VGMAX(dec) / 255)

This register sets the pixel voltage at which the maximum OLED current is regulated. It should be slightly below the VDD5 supply to prevent saturation of the video buffer amplifiers.

12.17 VCOM (11h)

Name	VCOM
Address	1 1 h
Mode	Read / Write

Bit Name	Bit#	Reset Value	Description
	7-0	51	VCOM manual setting

Cathode supply as a function of VCOM setting:

VCOM(h)	FF	F0	E0	D0	C0	B0	A0	90	80	70	60	51*	40	30
Voltage	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	0.29	0.38	0.47	0.59	0.72	0.85	1.0	1.2	1.43	1.7	2.0	2.4	2.97	3.68

*default value

Register VCOM[7,0] sets the fixed output level for the internal VCOM inverter when VCOMMODE =01 or 10. There is no compensation for the variation in OLED behavior with temperature in this mode of operation. As a result, a setting at room temperature will not necessarily result in optimal contrast and the same luminance at other temperatures. The default setting (51h) will result in a cathode supply \approx -2.3V. The typical dependency of luminance on the VCOM setting in manual mode is given in Figure 33 for a color display.

Figure 33 : Typical luminance dependency on manual VCOM setting

12.18 IDRF (12h)

Name	IDRF
Address	12h
Mode	Read / Write

Bit Name	Bit#	Reset Value	Description
IDRF_COARSE	7-5	0	Coarse adjustment for array reference current
IDRF_FINE	4-0	0	Fine adjustment for array reference current

IDRF_COARSE:

 $\frac{IC\#}{0h = 0 (default)}$ 1h = 0.5 2h = 1.5 3h = 2.5 4h = 3.5

IDRF_FINE:

 $\frac{IF\#}{00h = 0 (default)}$ 01h = 1/32... 10h = 16/32... 1Fh = 31/32

Register IDRF is used to set the maximum OLED current, which determines the luminance level for the display. The luminance will be directly proportional to the IDRF factor (sum of IC# and IF#) and the reference luminance LDEF given by the following expression:

LMAX = LDEF*(IC# + IF#) in cd/m²

where the luminance for a color display is LDEF ≈ 240 cd/m² at the recommended settings (see table below).

IDRF (hex)	LMAX / LDEF
0	0
10	0.5
20	0.5
30	1 (recommended)
40	1.5
50	2
60	2.5
70	3
80	3.5

12.19 DIMCTL (13h)

Name	DIMCTL
Address	13h
Mode	Read / Write

Bit Name	Bit#	Reset Value	Description
	6-0	1	Dimming level control

00h = 0 01h = 1% of LMAX ... 64h = 100% of LMAX

... 7Fh = 127% of LMAX This register provides linear control of the display luminance level ranging from 0 to 127% in steps of 1%. The recommended value of 64h is equal to 100% of the luminance defined by register IDRF.

This register is only operational in Auto VCOM mode (VCOMMODE=00).

12.20 TREFDIV (14h)

Name	TREFDIV
Address	14h
Mode	Read / Write

Bit Name	Bit#	Reset Value	Description
	5-0	17	Temperature sensor reference clock divider adjust

The register TREFDIV is used to adjust the slope of the temperature readout sensor, TEMPOUT, to correspond to the desired operating range of the display. The default setting is intended to support a full scale temperature range of -40 to 80°C, although the setting is best determined by a calibration measurement of the display in its final assembly.

See the description for register TEMPOUT.

12.21 TEMPOFF (15h)

Name	TEMPOFF
Address	15h
Mode	Read / Write

Bit Name	Bit#	Reset Value	Description
	7-0	3A	Temperature sensor offset adjust

The register TEMPOFF is used to adjust the offset of the temperature readout sensor, TEMPOUT, to correspond to the desired operating range of the display. The default setting is intended to support a full scale temperature range of -40 to 80°C, although the setting is best determined by a calibration measurement of the display in its final assembly.

See the description for register TEMPOUT.

12.22 TUPDATE (16h)

Name	TUPDATE
Address	16h
Mode	Read / Write

Bit Name	Bit#	Reset Value	Description
	7-0	FF	Number of frames per TEMPOUT update

This register sets the update rate of the Temperature Sensor reading, TEMPOUT. The time between sensor updates is given by:

Update Time = $(TUPDATE(decimal) + 1)*T_{FRAME}$

where the frame period T_{FRAME} is equal to 16.6 ms for 60Hz video. The valid range for TUPDATE is 02h to FFh.

12.23 TEMPOUT (17h)

Name	TEMPOUT
Address	17h
Mode	Read Only

Bit Name	Bit#	Reset Value	Description
	7-0	-	Temperature sensor readout

Register TEMPOUT provides an 8bit digital output that is linearly proportional to the chip temperature. The VGA display temperature sensor is designed around a P-N junction. The output of the junction is sampled by an internal current to voltage converter, digitized and stored into a dedicated 8-bit register TEMPOUT. The sampling rate is controlled by configuration register TUPDATE (16H). By default the temperature sensor is updated once every 255 frames. Two registers are used to set the sensor gain (TREFDIV) and sensor offset (TEMPOFF). The temperature sensor can be powered down when not used by setting TSENPD =1 in the PWRDN register.

The temperature sensor is intended to provide a full-scale reading over a temperature range defined by the user. Assuming that the desired operating temperature range is defined by T_{MIN} and T_{MAX} , the expected sensor response would be as follows:

$$TEMPOUT(dec) = A * temp + B$$

where temp is the chip temperature in degrees Celsius, and A and B are given by:

$$A = \frac{255}{T_{MAX} - T_{MIN}}$$
$$B = \frac{-255 * T_{MIN}}{T_{MAX} - T_{MIN}}$$

The actual sensor response is determined by registers TREFDIV and TEMPOFF through the following relationship:

 $TEMPOUT(d) = k_1 * TREFDIV(d) * temp + k_2 + TEMPOFF(d)$

The constants k_1 and k_2 are dependent on properties of the silicon and package assembly. For example, the average register settings needed to achieve a working temperature range of -60°C to +80°C are given by the following values for package A04-500463-01:

TREFDIV(d) = 25TEMPOFF(d) = 93

Using these values will result in a variation in temperature reading from part to part due to manufacturing tolerances. To get a reasonably good sensor performance it is usually enough to just find the optimum value for TEMPOFF which requires only one measurement at room temperature. Increased accuracy can be obtained for a specific part by performing the calibration measurements described below.

To find the optimum value for TREFDIV do the following:

- Place the display in a temperature controlled environment, e.g. an oven
- Set TREFDIV=25d=19h and TEMPOFF=0
- Set DISPMODE=20h (turn off the display)
- Read TEMPOFF at several ambient temperatures, e.g. 0°C, 20°C, 40°C, 60°C
- Take the slope to find the sensor response, $A_{MEAS} = dTEMPOUT(d)/dtemp$
- The optimum value for TREFDIV is then given by

$$TREFDIV_{OPT} = 25 * \frac{1.82}{A_{MEAS}}$$

To find the optimum value for TEMPOFF do the following:

- Set TREFDIV=25d=19h (or the optimum value) and TEMPOFF=0
- Set DISPMODE=20h (turn off the display)
- Allow several minutes to stabilize and then read TEMPOUT_{AMB} and the ambient temperature T_{AMB}
- The optimum value for TEMPOFF is then given by

$$TEMPOFF_{OPT} = 1.82 * T_{AMB} + 109 - TEMPOUT_{AMB}$$

With these settings, the microdisplay temperature can be found from the sensor reading through the following relationship:

$$T(^{\circ}C) = \frac{140}{255} * TEMPOUT(d) - 60$$

Temperatures below -60°C will return a TEMPOUT reading of 0 and temperatures above +80°C will return a hexadecimal value of FF.

12.24 ANGPWRDN (18h)

Name	ANGPWRDN
Address	18h
Mode	Read / Write

Bit Name	Bit#	Reset Value	Description
ICENDD	7	0	
ISENPD	/	0	ISEN power down
IDMAXPD	6	0	IDMAX power down
VCOMPD	5	0	VCOM power down
VREFPD	4	0	VREF power down
GMSENPD	3	0	Gamma sensor power down
VCSENPD	2	0	VCOM sensor power down
TSENPD	1	0	Temperature sensor power down
TREFPD	0	0	Temperature reference power down

ISENPD:

- 1 = VCOM current limit sensor is powered down
- 0 = normal operation (default)

IDMAXPD:

1 = IDMAX function is powered down

0 = normal operation (default)

VCOMPD:

- 1 = VCOM generator is powered down
- 0 = normal operation (default)

VREFPD:

- 1 = the VREF reference source is powered down
- 0 = normal operation (default)

GMSENPD:

- 1 = the Gamma sensor is powered down
- 0 = normal operation (default)

VCSNEPD:

- 1 = the VCOM sensor is powered down
- 0 = normal operation (default)

TSENPD:

- 1 = the Temperature Sensor is powered down
- 0 = the Temperature Sensor is operating normally (default)

TREFPD:

- 1 = the Temperature reference is powered down
- 0 = normal operation (default)

12.25 SYSPWRDN (19h)

Name	SYSPWRDN
Address	19h
Mode	Read / Write

Bit Name	Bit#	Reset	Description
		Value	
PDWN	7	0	All systems power down
LVDSPD	6	0	LVDS receiver power down
LDOPD	5	0	1.8V LDO power down
RBUFPD	4	0	RAMP Buffer Power Down
RAMPPD	3	0	RAMP DAC amp and buffer power down
DACPD	2	0	RAMP DAC power down
POR50VPD	1	0	5V power-on-reset power down
POR18VPD	0	0	2.5V power-on-reset power down

PDWN:

1 =all systems are powered down

0 = normal operation (default)

By setting the PDWN bit with LDOPD bit to a "1" the chip enters a deep sleep mode in which all functions including the I²C interface are powered down in order to minimize power consumption. The data, sync and clock inputs should be inactive and held low to achieve the lowest power consumption. An on-chip Address Detection circuit monitors the I²C input lines and resets the PDWN bit when it detects the correct I²C address, restoring the display to operating mode.

All register settings are saved in the power down mode and the display will restart in its previous state when normal operation is resumed.

LVDSPD:

1 = LVDS receiver is powered down

0 = normal operation (default)

LDOPD:

1 = 1.8 V LDO is powered down 0 = 1.8 V LDO is enabled (default)
It is recommended not to use the internal 1.8V LDO, so the LDOPD bit should be set to "1" when powering up the display.

RBUFPD:

- 1 =internal RAMP buffer is powered down
- 0 = normal operation (default)

RAMPPD:

1 = internal RAMP DAC amplifier is powered down 0 = normal operation (default)

DACPD:

1 = internal RAMP DAC is powered down (use when external RAMP option is enabled) 0 = internal RAMP DAC is operational (default)

The internal RAMP DAC generator may be power down if an external RAMP source is used.

POR50VPD:

- 1 = the 5V power-on-reset circuit is powered down
- 0 = normal operation (default)

POR18VPD:

1 = the 1.8V power-on-reset circuit is powered down

0 = normal operation (default)

12.26 TPMODE (1Ah)

Name	TPMODE
Address	1Ah
Mode	Read / Write

Bit Name	Bit#	Reset	Description
		Value	
TPVCLK	4	0	Enable external clock in Burn-in mode
PATTEN	3	0	Enable test pattern display
PATTSEL	2-0	0	Select test pattern for Burn-In mode

TPVCLK:

0 = Internal ring oscillator is used for test pattern generation (default)

1 = Test pattern generator use the external clock which is LVDS clock

The BI pin is tied high or PATTEN register set to high to activate the Burn-In test mode which can be used to check display functionality without the presence of external video data or clock signals. In this

mode the display generates data, syncs and the pixel clock internally for several different video patterns. The TPMODE register is used to select one of the built-in test patterns in Burn-In mode via the serial interface.

- 000 = all white pattern (default)
- 001 = color bars
- 010 =gray scale (without gamma correction)
- 011 = checkerboard pattern
- 100 =alternating columns pattern
- 101 = alternating rows pattern
- 110 = grid pattern
- 101 = all black
- 111 = color screen based on TPCOLOR register value.

Use with registers TPLINWTH, TPCOLSP, TPROWSP and TPCOLOR to modify the patterns according to Figure 34.

Test Pattern Name	PATTSEL (1BH:2-0)	TPLINWTH (1CH)	TPCOLSP (1DH)	TPROWSP (1EH)	TPCC (1F	
					(1FH:2-0)	(1FH:6-4)
All White	000	Х	Х	Х	Х	Х
Color Bar	001	Х	Х	Х	Х	Х
Gray Scale	010	Х	Х	Х	Х	Х
Checker Board	011	Х	Х	Х	111	000
Alternating Column	100	LW	CS	Х	111	000
Alternating Row	101	LW	Х	RS	111	000
Grid Pattern	110	LW	CS	RS	111	000
All Black	101	Х	Х	Х	000	000
All White	101	Х	Х	Х	111	111
All Red	101	Х	Х	Х	100	100
All Green	101	Х	Х	Х	010	010
All Blue	101	Х	Х	Х	001	001
Color Screen	111	Х	Х	Х	8 bit value ap col	-

Figure 34 : Test Patterns

X: Don't care, LW: Line Width (0~255), CS: Column Space (0~255), RS: Row Space (0~255)

12.27 TPLINWTH (1Bh)

Name	TPLINWTH
Address	1Bh
Mode	Read / Write

Bit Name	Bit#	Reset Value	Description
	7-0	0	Test pattern line width

This register is used to set the line width for the line-type test patterns.

0 = 1 pixel wide (default) 1 = 2 pixel wide

255 = 256 pixel wide

12.28 TPCOLSP (1Ch)

Name	TPCOLSP
Address	1Ch
Mode	Read / Write

Bit Name	Bit#	Reset Value	Description
	7-0	0	Test pattern column spacing

This register is used to set the column spacing for the column-type test patterns.

0 = 1 pixel space (default)

1 = 2 pixel space

255 = 256 pixel space

12.29 TPROWSP (1Dh)

Name	TPROWSP
Address	1Dh
Mode	Read / Write

Bit Name	Bit#	Reset Value	Description
	7-0	0	Test pattern row spacing

This register is used to set the row spacing for the row-type test patterns.

0 = 1 pixel space (default)

1 = 2 pixel space

... 255 = 256 pixel space

12.30 TPCOLOR (1Eh)

Name	TPCOLOR
Address	1Eh
Mode	Read / Write

Bit Name	Bit#	Reset Value	Description
	7:0	0	Test pattern color or 256 gray level

This register is used to set the background and foreground colors (RGB) for certain test patterns. When PATTSEL is selected to 4,5,or 6, bit2:0 is used as foreground color and bit 6:4 as background color.

All 8 bits data is applied to RGB data for one of 256 grey level when PATTSEL is selected to 7.

12.31 DLYSEL (1Fh)

Name	DLYSEL
Address	1Fh
Mode	Read / Write

Bit Name	Bit#	Reset Value	Description
SKWDLY	7-4	0	LVDS skew align reference clock delay
CLKDLY	3-0	1	LVDS clock delay for serial data latch

SKWDLY :

0 = Base delay

1 = Base delay + 1 unit delay

•••

15 = Base delay + 15 unit delay

CLKDLY :

...

0 = Base delay

1 = Base delay + 1 unit delay

15 = Base delay + 15 unit delay

Figure 35 : LVDS Skew compensation timing diagram

12.32 LVDSCTL (20h)

Name	LVDSCTL
Address	20h
Mode	Read / Write

Bit Name	Bit#	Reset Value	Description
ALNMOD	2	0	Enable LVDS align mode
SKEWMOD	1-0	0	Select skew compensation mode

ALNMOD :

1 = Enable LVDS align mode

- LVDS Tx should send proper align pattern (10000000) on LVDS_DAT1 with ALIGN signal
- Don't set with SKEWMOD = 1 (auto skew compensation mode)

0 = Disable LVDS align mode (stay current align setting and any ALIGN and align pattern input are ignored)

Figure 36 : LVDS Align pattern

ALNMOD should set after activate ALIGN signal and reset before deactivate ALIGN signal. It is recommended to use free running HSYNC as ALIGN signal.

SKEWMOD:

0 = Normal operation mode (stays current skew delay setting and no change)

- 1 = Automatic skew delay setting mode
 - LVDS Tx should send proper Skew compensation pattern (00001111) on all data and clock

2 = Manual common skew delay setting mode (SKEW1 delay setting is used on all data line delay)

3 = Manual separate skew delay setting mode

Figure 38 : Skew compensation pattern

The SKEWMOD register operation is only valid while LVDS TX is sending the skew compensation pattern.

12.33 SKEW0 (21h, 22h)

:

Name	SKEW0
Address	21h, 22h
Mode	Read / Write

Bit Name	Bit#	Reset Value	Description
SKEW0(21h)	7-0	0	data line #0 delay setting lower byte
SKEW0 (22h)	15-8	0	data line #0 delay setting upper byte

00000000 00000000 = Base delay setting

- $00000000 \ 0000001 = Base + 1$ unit delay setting
- 00000000 00000011 = Base + 2 unit delay setting
- 00000000 00000111 = Base + 3 unit delay setting
- $00000000 \ 00001111 = Base + 4$ unit delay setting

01111111 11111111 = Base + 14 unit delay setting

11111111 11111111 = Base + 15 unit delay setting

I²C register SKEW0~SKEW3 read out are always current working delay value

- SKEWMOD = 0 or 1 : current auto skew compensated values are read
- SKEWMOD = 2 : SKEW0 register value is applied to all other skew resister and read on all SKEW0~SKEW3
- SKEWMOD = 3 : each SKEWi register values are applied and read

Figure 39 : Skew compensation block diagram

12.34 SKEW1 (23h, 24h)

Name	SKEW1
Address	23h, 24h
Mode	Read / Write

Bit Name	Bit#	Reset Value	Description
SKEW1 (24h)	7-0	0	data line #1delay setting lower byte
SKEW1 (25h)	15-8	0	data line #1 delay setting upper byte

12.35 SKEW2 (25h, 26h)

Name	SKEW2
Address	25h, 26h
Mode	Read / Write

Bit Name	Bit#	Reset Value	Description
SKEW2 (25h)	7-0	0	data line #2 delay setting lower byte
SKEW2 (25h)	15-8	0	data line #2 delay setting upper byte

12.36 SKEW3 (27h, 28h)

Name	SKEW3
Address	27h, 28h
Mode	Read / Write

Bit Name	Bit#	Reset Value	Description
SKEW3 (27h)	7-0	0	data line #3 delay setting lower byte

SKEW3 (28h) 15-8 0 data line #3 delay setting upper byte

12.37 SKFAST (29h)

Name	SKFAST
Address	29h
Mode	Read Only

Bit Name	Bit#	Reset Value	Description
SKFAST	3-0	-	All "0' after skew compensation => OK

Bit 15 of SKEW0 ~ SKEW3. If any of SKFAST bit is read as "1" after skew compensation then that line comes much faster than selected skew clock. Decrease SKWDLY setting if possible.

Figure 40 : SKFAST and SKSLOW register mapping

12.38 SKSLOW (2Ah)

Name	SKSLOW
Address	2Ah
Mode	Read Only

Bit Name	Bit#	Reset Value	Description
SKSLOW	3-0	0	All "1" after skew compensation => OK

Bit 0 of SKEW0 ~ SKEW3. If any of SKSLOW bit is read as "0" after skew compensation then that line comes to much slower than selected skew clock. Increase SKWDLY setting if possible.

12.39 SYNCMOD (2Bh)

Name	SYNCMOD
Address	2Bh
Mode	Read / Write

Bit Name	Bit#	Reset Value	Description
DEFEN	2-1	1	Define ENABLE pin function
DEFHS	0	0	Define LVDS_ALGN pin function

DEFEN:

- 0 = Do not use ENABLE pin (ENABLE & VSYNC signal uses thru LVDS data lines)
- 1 = ENABLE pin used as ENABLE (Default)
- 2 = ENABLE pin used as VSYNC

3 = Do not use

DEFHS:

- 0 = LVDS_ALGN pin used as ALIGN function
- 1 = LVDS_ALGN pin used as ALIGN & HSYNC function

12.40 LUT_ADDR (2Ch)

Name	LUT_ADDR
Address	2Ch
Mode	Read / Write

Bit Name	Bit#	Reset Value	Description
LUT_ADDR	7-0	0	Gamma look-up table template access address

12.41 LUT_DATA (2Dh, 2Eh)

Name	LUT_DATA
Address	2Dh, 2Eh
Mode	Read / Write

Bit Name	Bit#	Reset Value	Description
LUT_DATAL (2Dh)	7-0	0	Gamma look-up table template R/W data LSB
LUT_DATAH (2Eh)	9-8	0	Gamma look-up table template R/W data MSB

When LUT_DATAL(2Dh) register is written following operations are happen

- Write Gamma look-up table template memory to LUT_DAT (10bit) data at current LUT_ADDR address
- Increase LUT_ADDR register by 1 after write operation

When LUT_DATA register are read following data are read

• Current LUT_ADDR address data of Gamma look-up table memory are read

12.42 LUT_UPDATE (2Fh)

Name	LUT_UPDATE
Address	2Fh
Mode	Read / Write

Bit Name	Bit#	Reset Value	Description
UDGAMMA	3	0	Update LUT template to R,G,B LUT memory
UDRGB	2-0	7	Select R,G,B Gamma LUT for Update

UDGAMMA:

0 =No operations happen

1 = Enable copy LUT template memory data to selected R,G,B Gamma LUT memory UDGAMMA register operation

- R,G,B LUT memory update is started at first VSYNC rising edge meet after UDGAMMA register set to 1
- UDGAMMA register cleared to 0 after update operation end automatically

UDGAMMA (2Fh:bit3)	Set by user	Clear automatically
VSYNC		
Gamma LUT Template		
RGB Gamma LUT		Finish LUT update

Figure 41 : Gamma LUT Update timing

UDRGB:

001 = Select B Gamma LUT memory updated

010 = Select G Gamma LUT memory updated

011 = Select G, B Gamma LUT memory updated

100 = Select R Gamma LUT memory updated

101 = Select R, B Gamma LUT memory updated

110 = Select R, G Gamma LUT memory updated

111 = Select R, G, B Gamma LUT memory updated

12.43 Reserved (30h,31h,32h,33h)

Name	Reserved
Address	30h,31h,32h,33h
Mode	Read

Bit Name	Bit#	Reset Value	Description
	7-0	-	Reserved

12.44 Reserved (34h,35h)

Name	Reserved
Address	34h,35h
Mode	Read / Write

Bit Name	Bit#	Reset Value	Description
	7-0	99	Reserved (Do Not Change)

12.45 Reserved (36h)

Name	Reserved
Address	36h
Mode	Read / Write

Bit Name	Bit#	Reset Value	Description
	3-0	0	Reserved (Do Not Change)

12.46 Reserved (37h)

Name	Reserved
Address	37h
Mode	Read / Write

Bit Name	Bit#	Reset Value	Description
	6-0	0	Reserved (Do Not Change)

12.47 Reserved (38h,39h)

Name

Reserved

Address	38h,39h
Mode	Read / Write

Bit Name	Bit#	Reset Value	Description
	7-0	0	Reserved (Do Not Change)

12.48 Reserved (3Ah)

Name	Reserved
Address	3Ah
Mode	Read / Write

Bit Name	Bit#	Reset Value	Description
	7-0	FF	Reserved (Do Not Change)

12.49 Reserved (3Bh)

Name	Reserved
Address	3Bh
Mode	Read / Write

Bit Name	Bit#	Reset Value	Description
	7-0	0	Reserved (Do Not Change)

12.50 Reserved (3Ch)

Name	Reserved
Address	3Ch
Mode	Read / Write

Bit Name	Bit#	Reset Value	Description
	4-0	0	Reserved (Do Not Change)

12.51 Reserved (3Dh)

Name	Reserved
Address	3Dh
Mode	Read / Write

Bit Name	Bit#	Reset Value	Description
	2-0	3	Reserved (Do Not Change)

12.52 Reserved (40h)

Name	Reserved
Address	40h
Mode	Read / Write

Bit Name	Bit#	Reset Value	Description
	6-0	0	Reserved (Do Not Change)

12.53 Reserved (41h)

Name	Reserved
Address	41h
Mode	Read / Write

Bit Name	Bit#	Reset Value	Description
	7-0	30	Reserved (Do Not Change)

12.54 Reserved (42h)

Name	Reserved
Address	42h
Mode	Read / Write

Bit Name	Bit#	Reset Value	Description
	6-0	64	Reserved (Do Not Change)

13. APPENDIX A: APPLICATION SYSTEM DIAGRAM

Figure 42 : Block diagram of application reference system

Figure 43 : LVDS TX Reference Design

The LVDS TX module should have two I2C registers, which are TX_ALNMOD and TX_SKEWMOD since LVDS RX requires special alignment and skew compensation patterns. ALNMOD Register : When it is set, the TX should send the alignment pattern via 2ndLVDS data channel (LVDS_DAT1) and LVDS_ALIGN signal which is a CMOS output. The alignment pattern is: "10000000".

Figure 44 : LVDS Alignment Pattern and Timing

SKEWMOD Register : When it is set, the TX should send the skew compensation patterns through all of the LVDS channel including the clock channel. The skew compensation pattern is "0001111".

Figure 45 : LVDS Skew Compensation Pattern and Timing

Example RTL Code for LVDS_TXOUT_5X8.v

```
// Created Tue Nov 26 11:31:11 2013
 //---
 // Title
// Design
                                                 : LVDS_TXOUT_5X8
: SXGA096 FPGA
          Design
 // Author : Jae Koh
// Company : eMagin
 //-----
                                                                                      _____
                                                                                                                                                                                                                                                                                    _____
    timescale 1ns / 10ps
module LVDS_TXOUT_5X8 ( HS_IN ,HS_OUT ,rstn ,DIN ,EN_IN ,EN_OUT ,clk ,DOUT
,DE_IN ,VS_IN ,LVDSCTL ,LVDS_HS ,VS_OUT ,DE_OUT );
                                     input EN_IN ;
                                     wire EN IN ;
input HS IN ;
                                     wire HS_IN ;
input [23:0] DIN ;
wire [23:0] DIN ;
                                     input clk ;
                                     wire clk ;
                                     wire CIK ;
input VS_IN ;
wire VS_IN ;
input DE_IN ;
                                     wire DE IN ;
                                     input rstn ;
                                     wire rstn ;
input [1:0] LVDSCTL ;
                                                                                                                                             // {ALNMOD, SKWMOD}
                                     wire [1:0] LVDSCTL ;
                                     output EN_OUT ;
wire EN OUT ;
                                     output HS_OUT ;
                                     wire HS_OUT ;
output VS_OUT ;
                                     wire VS_OUT ;
output DE_OUT ;
                                     wire DE_OUT ;
output [39:0] DOUT ;
                                     reg [39:0] DOUT ;
                                    output LVDS_HS ;
reg LVDS_HS ;
                                     reg [87:0] DOUTO ;
reg [4:0] VSO, DEO, ENO;
reg [7:0] HSO;
                                      wire ALGN;
                                     wire ALNMOD = LVDSCTL[1];
wire SKWMOD = LVDSCTL[0];
                                    assign EN_OUT = ENO[4];
assign VS_OUT = VSO[4];
assign HS_OUT = HSO[4];
assign DE_OUT = DEO[4];
                                     assign ALGN = ~DE_IN & (HS_IN | HSO[3] | HSO[7]) & ALNMOD;
                                     wire [7:0] RIN, GIN, BIN;
                                     assign RIN = DIN[23:16];
                                     assign GIN = DIN[23:16];
assign BIN = DIN[15:8];
                                     always @(DOUT0)
                                                                          begin
                                                                                                                // LVDS_CLK
                                                                                                                DOUT[39] <= DOUT0[39];
DOUT[38] <= DOUT0[38];
                                                                                                                DOUT[37] <= DOUT0[37];
DOUT[36] <= DOUT0[36];
                                                                                                              DOUT[37] <= DOUTO[37];

DOUT[35] <= DOUTO[36];

DOUT[35] <= DOUTO[35];

DOUT[31] <= DOUTO[33];

DOUT[32] <= DOUTO[33];

DOUT[32] <= DOUTO[31];

DOUT[31] <= DOUTO[31];

DOUT[30] <= DOUTO[30];

DOUT[29] <= DOUTO[29];

DOUT[29] <= DOUTO[28];

DOUT[27] <= DOUTO[28];

DOUT[27] <= DOUTO[26];

DOUT[26] <= DOUTO[26];

DOUT[27] <= DOUTO[27];

DOUT[2
```

```
DOUT[18] <= DOUT0[18];
DOUT[17] <= DOUT0[17];
DOUT[16] <= DOUT0[16];
// LVDS_D[1]
DOUT[15] <= DOUT0[14];
DOUT[13] <= DOUT0[14];
DOUT[13] <= DOUT0[13];
DOUT[12] <= DOUT0[11];
DOUT[10] <= DOUT0[10];
DOUT[10] <= DOUT0[10];
DOUT[9] <= DOUT0[9];
DOUT[8] <= DOUT0[9];
DOUT[9] <= DOUT0[9];
DOUT[7] <= DOUT0[7];
DOUT[6] <= DOUT0[6];
DOUT[5] <= DOUT0[6];
DOUT[4] <= DOUT0[4];
                                                           DOUT[4] <= DOUT0[4];
DOUT[3] <= DOUT0[3];</pre>
                                                          DOUT[2] <= DOUT0[2];
DOUT[2] <= DOUT0[2];
DOUT[1] <= DOUT0[1];
DOUT[0] <= DOUT0[0];
                             end
always @(negedge rstn or negedge clk)
                             if (!rstn)
                                                          LVDS_HS <= 0;
                             else
                                                          LVDS_HS <= HSO[2];
always @(negedge rstn or posedge clk)
                             if (!rstn)
                                                           begin
                                                                                        VSO <= 0;
HSO <= 0;
                                                                                         DEO <= 0;
                                                                                         ENO <= 0;
                                                                                         DOUTO <= 0;
                                                           end
                             else
                                                          begin
                                                                                        VSO <= {VSO[3:0], VS_IN};
HSO <= {HSO[6:0], HS_IN};
DEO <= {DEO[3:0], DE_IN};
ENO <= {ENO[3:0], EN_IN};
                                                                                         if (SKWMOD)
                                                                                                                      begin
                                                                                                                                                    DOUTD \leq = 40 b) FOFOFOFOF:
                                                                                                                      end
                                                                                         else
                                                                                                                      begin
                                                                                                                                                    DOUT0[39:32] <= 8'b01010101;
// RD3P/RD3N
                                                                                                                                                   // RD3P/RD3N
DOUT0[31] <= BIN[5];
DOUT0[30] <= BIN[5];
DOUT0[20] <= BIN[3];
DOUT0[28] <= BIN[3];
DOUT0[28] <= BIN[0];
DOUT0[26] <= BIN[0];
DOUT0[26] <= BIN[6];
DOUT0[25] <= BIN[6];
DOUT0[24] <= ~BIN[6];
// RD2P/RD2N</pre>
                                                                                                                                                   DOUTO[24] <= ~BIN[6]
// RD2P/RD2N
DOUTO[23] <= RIN[0];
DOUTO[22] <= DE_IN;
DOUTO[21] <= HS_IN;
DOUTO[21] <= HS_IN;
DOUTO[12] <= EN_IN;
DOUTO[13] <= BIN[7];
DOUTO[14] <= GIN[7];
                                                                                                                                                    DOUT0[16] <= ~GIN[7];
                                                                                                                                                    // RD1P/RD1N
if (ALGN)
                                                                                                                                                                                  begin
                                                                                                                                                                                                               DOUT0[15] <= 1;
DOUT0[14] <= 0;
DOUT0[13] <= 0;
DOUT0[13] <= 0;
DOUT0[12] <= 0;
                                                                                                                                                                                                               DOUTO[11] <= 0;
DOUTO[10] <= 0;
DOUTO[9] <= 0;
DOUTO[8] <= 0;
                                                                                                                                                                                  end
                                                                                                                                                    else
                                                                                                                                                                                  begin
                                                                                                                                                                                                               DOUT0[15] <= GIN[6];
DOUT0[14] <= GIN[5];
DOUT0[13] <= GIN[1];
                                                                                                                                                                                                                DOUTO[12] <= GIN[0];
DOUTO[11] <= GIN[4];
                                                                                                                                                                                                                DOUTO[10] <= GIN[3];
DOUTO[9] <= GIN[2];
DOUTO[8] <= ~GIN[2];
                                                                                                                                                                                  end
```

// RDOP/RDON

DOUT0[7]	<= RIN[7];
DOUT0[6]	<= RIN[1];
DOUT0[5]	<= RIN[6];
DOUT0 [4]	<= RIN[5];
DOUT0[3]	<= RIN[4];
DOUT0 [2]	<= RIN[3];
DOUT0[1]	<= RIN[2];
DOUT0[0]	<= ~RIN[2];

end

end

endmodule

Figure 46 : LVDS Link Setup Flow Chart for Firmware

15. APPENDIX C: EEPROM MEMORY MAP

Each SXGA096 micro display contains an EEPROM memory device to serve as non-volatile data storage for retrieving display specific information, such as its serial number and optimal registers values for proper operation. The data can be accessed via the same I²C serial interface that is used to communicate with the micro display. The EEPROM'S serial address is as follows:

SERADD = 0

Write Mode:	Address is A6h
Read Mode:	Address is A7h
SERADD = 1	
Write Mode:	Address is AEh
Read Mode:	Address is AFh

The first 15 bytes represent the serial number of the SXGA096 micro display. The following 68 bytes contain sequential data values that can be used to write to the micro display's internal registers starting with eeprom address 16 to 84.

Addresses 00 to 15 (decimal) should not be changed as they contain serial number and traceability information

Addresses 34, 36, 37,141, 142 to145 contain calibrated values specific to each display and should not be changed

Address 34 contains the IDRF value needed to reach 150 cd/m² at room ambient Addresses 36 and 37 contain the on-chip temperature sensor calibration values, needed to correctly measure the display temperature Addresses 142-145 contain the information needed to calculate the IDRF needed set an absolute luminance (in cd/m²).

Registers defined as RESERVED should not be changed.

Addresses beyond 8Fh are blank and may be used.

NOTE: The EEPROM is not write-protected and care should be taken not to activate the Write Mode. The values highlighted in gray are measured at the factory and are specific to each individual device.

Memory	Memory		Memory Memory			
Addr (Dec)	Addr (hex)	EEPROM Data	Addr (Dec)	Addr (hex)	EEPROM Data	
0	0	Serial Char #0	43	2B	TPLINWTH	
1	1	Serial Char #1	44	2C	TPCOLSP	
2	2	Serial Char #2	45	2D	TPROWSP	
3	3	Serial Char #3	46	2E	TPCOLOR	
4	4	Serial Char #4	47	2F	DLYSEL	
5	5	Lot Char#0	48	30	LVDSCTL	
6	6	Lot Char#1	49	31	SKEWOL	
7	7	Lot Char#2	50	32	SKEWOH	
8	8	Lot Char#3	51	33	SKEW1L	
9	9	Lot Char#4	52	34	SKEW1H	
10	А	Lot Char#5	53	35	SKEW2L	
11	В	Wafer Char#0	54	36	SKEW2H	
12	С	Wafer Char#1	55	37	SKEW3L	
13	D	Wafer Char#2	56	38	SKEW3H	
14	E	Wafer Char#3	57	39	SKFAST	
15	F	Data Format Version# (00h)	58	3A	SKSLOW	
16	10	STAT	59	3B	SYNCMOD	
17	11	VINMODE	60	3C	LUT_ADDR	
18	12	DISPMODE	61	3D	LUT_DATA_L	
19	13	LFTPOS	62	3E	LUT_DATA_H	
20	14	RGTPOS	63	3F	LUT_UPDATE	
21	15	TOPPOS	64	40	NOFPIXELL	
22	16	BOTPOS	65	41	NOFPIXELH	
23	17	ROWRESETL	66	42	NOFLINEL	
24	18	ROWRESETH	67	43	NOFLINEH	
25	19	RAMPCTL	68	44	NVCK0	
26	1A	RAMPCM	69	45	NVCK1	
27	1B	VDACMX	70	46	PUPCTL	
28	1C	BIASN	71	47	HIDNCTL	
29	1D	GAMMASET	72	48	DIGTEST	
30	1E	VCOMMODE	73	49	Reserved	
31	1F	VCOMCTL	74	4A	Reserved	
32	20	VGMAX	75	4B	Reserved	
33	21	VCOM	76	4C	Reserved	
34	22	IDRF	77	4D	Reserved	
35	23	DIMCTL	78	4E	Reserved	
36	24	TREFDIV			DISPMOD_BN	
37	25	TEMPOFF	80 50		IDRF_BN	
38	26	TUPDATE	81	51	DIMCTL_BN	
39	27	TEMPOUT	82	52	Reserved	
40	28	ANGPWRDN	83	53	Reserved	
41	29	SYSPWRDN	84	54	Reserved	
42	2A	TPMODE	85	55	VGNA0_HI	

Memory	Memory		Memory	Memory		
Addr (Dec)	Addr (hex)	EEPROM Data	Addr (Dec)	Addr (hex)	EEPROM Data	
86	56	VGNA0_LO	129	81	GMMA06_HI	
87	57	VGNA1_HI	130	82	GMMA06_LO	
88	58	VGNA1_LO	131	83	GMMA07_HI	
89	59	VGNA2_HI	132	84	GMMA07_LO	
90	5A	VGNA2_LO	133	85	Blank	
91	5B	VGNA3_HI	134	86	Blank	
92	5C	VGNA3_LO	135	87	Blank	
93	5D	VGNA4_HI	136	88	Blank	
94	5E	VGNA4_LO	137	89	MM	
95	5F	VGNA5_HI	138	8A	DD	
96	60	VGNA5_LO	139	8B	YY	
97	61	VGNA6_HI	140	8C	YY	
98	62	VGNA6_LO	141	8D	Blank	
99	63	VGNA7_HI	142	8E	slope1 (int)	
100	64	VGNA7_LO	143	8F	slope2 (frac)	
101	65	VGNB0_HI	144	90	Origin_L	
102	66	VGNB0_LO	145	91	Origin_H	
103	67	VGNB1_HI				
104	68	VGNB1_LO				
105	69	VGNB2_HI				
106	6A	VGNB2_LO				
107	6B	VGNB3_HI				
108	6C	VGNB3_LO				
109	6D	VGNB4_HI				
110	6E	VGNB4_LO				
111	6F	VGNB5_HI				
112	70	VGNB5_LO				
113	71	VGNB6_HI				
114	72	VGNB6_LO				
115	73	VGNB7_HI				
116	74	VGNB7_LO				
117	75	GMMA00_HI				
118	76	GMMA00_LO				
119	77	GMMA01_HI				
120	78	GMMA01_LO				
121	79	GMMA02_HI				
122	7A	GMMA02_LO				
123	7B	GMMA03_HI				
124	7C	 GMMA03_LO				
125	7D	GMMA04_HI				
126	7E	 GMMA04_LO				
127	7F	 GMMA05_HI				
128	80	 GMMA05_LO				

16. APPENDIX D: RECOMMENDED REGISTER SETTINGS

Below are the recommended settings for l	luminance levels greater than ~ 50 cd/m ²
$\partial \partial $	

00h: STATUS	00	15h: TMPOFF	75	2Ah: SKSLW	00	3Fh: RES	00
01h: VINMODE	07	16h: TUPDTE	10	2Bh: SYNCMD	02	40h: RES	00
02h: DISPMODE	20	17h: TEMPOUT	FF	2Ch: LUT_ADR	00	41h: RES	30
03h: LFTPOS	06	18h: ANGPRDN	00	2Dh: LUTDL	00	42h: RES	64
04h: RGTPOS	06	19h: SYSPRDN	00	2Eh: LUTDH	00		
05h: TOPPOS	06	1Ah: TPMODE	00	2Fh: LUT_UP	07		
06h: BOTPOS	06	1Bh: TPLNWTH	00	30h: RES	00		
07h: ROWRSTL	00	1Ch: TPCOLSP	00	31h: RES	05		
08h: ROWRSTH	00	1Dh: TPROWSP	00	32h: RES	00		
09h: RAMPCTL	01	1Eh: TPCOLOR	07	33h: RES	04		
0Ah: RAMPCM	44	1Fh: DLYSEL	12	34h: NVCK0	99		
0Bh: VDACMX	80	20h: LVDSCTL	04	35h: NVCK1	99		
0Ch: BIASN	03	21h: SKEW0L	00	36h: RES	00		
0Dh: GAMMST	07	22h: SKEW0H	00	37h: RES	00		
0Eh: VCOMMDE	04	23h: SKEW1L	00	38h: RES	00		
0Fh: VCOMCTL	3D	24h: SKEW1H	00	39h: RES	00		
10h: VGMAX	4D	25h: SKEW2L	00	3Ah: RES	FF		
11h: VCOM	51	26h: SKEW2H	00	3Bh: RES	00		
12h: IDRF	06	27h: SKEW3L	00	3Ch: RES	00		
13h: DIMCTL	64	28h: SKEW3H	00	3Dh: RES	03		
14h: TREFDV	17	29h: SKFST	00	3Eh: RES	00		